Computational photography techniques based on deconvolution

CS 178, Spring 2009

Marc Levoy
Computer Science Department
Stanford University

Removing camera shake

- Can you fix a blurry image by sharpening it in Photoshop?

(simulated blurry image)

Removing camera shake

- Can you fix a blurry image by sharpening it in Photoshop?

(simulated blurry image)

Removing camera shake, $2^{\text {nd }}$ try

+ camera shake can be modeled as a 2D convolution

- recall that discrete convolution replaces each pixel with a linear combination of nearby pixels
* in linear algebra, a matrix replaces each element in a vector with a linear combination of all other elements
\therefore convolution can be formulated as matrix multiplication

Convolution as matrix multiplication

- let the sharp scene be represented by a vector

$$
\mathbf{f}=\left[\begin{array}{lllllllllll}
4 & 7 & 8 & 4 & 2 & 5 & 9 & 6 & 8 & 4 & 2
\end{array}\right]
$$

- let the filter kernel be represented as a second vector

$$
\mathbf{g}=\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 1
\end{array}\right]
$$

- the convolution $\mathbf{f} \otimes \mathbf{g}$ becomes the matrix-vector product

$$
\mathbf{A} \mathbf{X}=\left[\begin{array}{lllllllllll}
3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
7 \\
8 \\
4 \\
2 \\
5 \\
9 \\
6 \\
8 \\
4 \\
2
\end{array}\right] \quad \text { where } \mathbf{X}=\mathbf{f}^{T}
$$

Convolution as matrix multiplication

- let the sharp scene be represented by a vector

$$
\mathbf{f}=\left[\begin{array}{lllllllllll}
4 & 7 & 8 & 4 & 2 & 5 & 9 & 6 & 8 & 4 & 2
\end{array}\right]
$$

- let the filter kernel be represented as a second vector

$$
\mathbf{g}=\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 1
\end{array}\right]
$$

\downarrow the convolution $\mathbf{f} \otimes \mathbf{g}$ becomes the matrix-vector product

$$
\mathbf{A x}=\left[\begin{array}{llllllllllll}
3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
7 \\
8 \\
4 \\
2 \\
5 \\
9 \\
6 \\
8 \\
8 \\
4 \\
2
\end{array}\right]
$$

Inverting convolution (deconvolution)

+ if the blurred image \mathbf{b} is given by

$$
\mathbf{A x}=\mathbf{b}
$$

* then the sharp scene \mathbf{x} can be recovered by

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

where

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrrrrrrrrrr}
0.8571 & -0.7857 & 0.0000 & 0.6429 & -0.5714 & 0 & 0.4286 & -0.3571 & -0.0000 & 0.2143 & -0.1429 \\
-0.7857 & 1.5536 & -0.7500 & -0.5893 & 1.1071 & -0.5000 & -0.3929 & 0.6607 & -0.2500 & -0.1964 & 0.2143 \\
0.0000 & -0.7500 & 1.5000 & -0.7500 & -0.5000 & 1.0000 & -0.5000 & -0.2500 & 0.5000 & -0.2500 & 0.0000 \\
0.6429 & -0.5893 & -0.7500 & 1.9821 & -1.1786 & -0.5000 & 1.3214 & -0.7679 & -0.2500 & 0.6607 & -0.3571 \\
-0.5714 & 1.1071 & -0.5000 & -1.1786 & 2.2143 & -1.0000 & -0.7857 & 1.3214 & -0.5000 & -0.3929 & 0.4286 \\
0 & -0.5000 & 1.0000 & -0.5000 & -1.0000 & 2.0000 & -1.0000 & -0.5000 & 1.0000 & -0.5000 & 0.0000 \\
0.4286 & -0.3929 & -0.5000 & 1.3214 & -0.7857 & -1.0000 & 2.2143 & -1.1786 & -0.5000 & 1.1071 & -0.5714 \\
-0.3571 & 0.6607 & -0.2500 & -0.7679 & 1.3214 & -0.5000 & -1.1786 & 1.9821 & -0.7500 & -0.5893 & 0.6429 \\
-0.0000 & -0.2500 & 0.5000 & -0.2500 & -0.5000 & 1.0000 & -0.5000 & -0.7500 & 1.5000 & -0.7500 & 0.0000 \\
0.2143 & -0.1964 & -0.2500 & 0.6607 & -0.3929 & -0.5000 & 1.1071 & -0.5893 & -0.7500 & 1.5536 & -0.7857 \\
-0.1429 & 0.2143 & 0.0000 & -0.3571 & 0.4286 & 0.0000 & -0.5714 & 0.6429 & 0.0000 & -0.7857 & 0.8571
\end{array}\right]
$$

Why is deconvolution hard?

- matrix A and blurred image b are typically very big
- for a 10 megapixel image
- A has 10 million rows and 10 million columns
- b has 10 million entries
- matrix \mathbf{A} is typically very sparse
- mostly zeros
+ methods for solving big sparse systems of equations
- conjugate gradient descent
- etc.

Another reason deconvolution is hard

- matrix A may be poorly conditioned
- a small change (or noise) in \mathbf{b} causes a large change in \mathbf{x}

Another reason deconvolution is hard

- matrix A may be poorly conditioned
- a small change (or noise) in \mathbf{b} causes a large change in \mathbf{x}
- equivalently, its Fourier transform may contain zeros
- sinusoids of some frequencies will be missing from \mathbf{b}
+ to be well conditioned, the filter shouldn't be smooth
- bad:
 better: ?
- convolution by the first throws away detail, creating zeros
- convolution by the second makes many sharp copies
- inverting an ill-conditioned A produces a noisy result

Blind deconvolution

- sometimes you don't know \mathbf{x} or \mathbf{A}
- i.e. you don't know the sharp scene or the filter
- solving blind deconvolution problems
- use a prior assumption about what the unknown sharp scene \mathbf{x} should look like
- this is hard, and we're not very good at it
- solutions typically contain ringing, or worse...

Removing camera shake

[Fergus SIGGRAPH 2006]

- deconvolve blurred image, using the statistics of natural scenes as a prior

blur kernel

Removing camera shake

[Yuan SIGGRAPH 2007]

+ deconvolve long-exposure (blurred) image, using short-exposure (noisy) image as a prior

long exposure (blurry)

short exposure (dark)

same, scaled up joint deconvolution (noisy)

Removing motion blur

[Raskar SIGGRAPH 2006]
continuous shutter

Removing motion blur

[Raskar SIGGRAPH 2006]

continuous shutter

fluttered shutter

Removing defocus

- a.k.a. extended depth of field (EDOF)
- all-focus algorithm
- wavefront coding + deconvolution
\downarrow rubber focus + deconvolution

All-focus algorithm

 [Agarwala SIGGRAPH 2004]

Wavefront coding

[Dowski 1995]

profile of cubic phase plate

MTFs through lens and cubic phase plate

Wavefront coding

[Dowski 1995]

wavefront coded

Slide credits

- Andrew Adams

