Computational photography techniques based on deconvolution

CS 178, Spring 2009

Marc Levoy Computer Science Department Stanford University

Removing camera shake

Can you fix a blurry image by sharpening it in Photoshop?

Removing camera shake

Can you fix a blurry image by sharpening it in Photoshop?

© 2009 Marc Levoy

Removing camera shake, 2nd try

camera shake can be modeled as a 2D convolution

- recall that discrete convolution replaces each pixel with a linear combination of nearby pixels
- in linear algebra, a matrix replaces each element in a vector with a linear combination of all other elements
 - : convolution can be formulated as matrix multiplication

Convolution as matrix multiplication

let the sharp scene be represented by a vector

 $\mathbf{f} = \begin{bmatrix} 4 & 7 & 8 & 4 & 2 & 5 & 9 & 6 & 8 & 4 & 2 \end{bmatrix}$

let the filter kernel be represented as a second vector
 g = [1 2 3 2 1]

+ the convolution $\mathbf{f} \otimes \mathbf{g}$ becomes the matrix-vector product

Convolution as matrix multiplication

let the sharp scene be represented by a vector

 $\mathbf{f} = \begin{bmatrix} 4 & 7 & 8 & 4 & 2 & 5 & 9 & 6 & 8 & 4 & 2 \end{bmatrix}$

let the filter kernel be represented as a second vector
 g = [1 2 3 2 1]

+ the convolution $\mathbf{f} \otimes \mathbf{g}$ becomes the matrix-vector product

Inverting convolution (deconvolution)

if the blurred image b is given by Ax = b

then the sharp scene x can be recovered by x = A⁻¹b

where	0.8571	-0.7857	0.0000	0.6429	-0.5714	0	0.4286	-0.3571	-0.0000	0.2143	-0.1429
$A^{-1} =$	-0.7857	1.5536	-0.7500	-0.5893	1.1071	-0.5000	-0.3929	0.6607	-0.2500	-0.1964	0.2143
	0.0000	-0.7500	1.5000	-0.7500	-0.5000	1.0000	-0.5000	-0.2500	0.5000	-0.2500	0.0000
	0.6429	-0.5893	-0.7500	1.9821	-1.1786	-0.5000	1.3214	-0.7679	-0.2500	0.6607	-0.3571
	-0.5714	1.1071	-0.5000	-1.1786	2.2143	-1.0000	-0.7857	1.3214	-0.5000	-0.3929	0.4286
	0	-0.5000	1.0000	-0.5000	-1.0000	2.0000	-1.0000	-0.5000	1.0000	-0.5000	0.0000
	0.4286	-0.3929	-0.5000	1.3214	-0.7857	-1.0000	2.2143	-1.1786	-0.5000	1.1071	-0.5714
	-0.3571	0.6607	-0.2500	-0.7679	1.3214	-0.5000	-1.1786	1.9821	-0.7500	-0.5893	0.6429
	-0.0000	-0.2500	0.5000	-0.2500	-0.5000	1.0000	-0.5000	-0.7500	1.5000	-0.7500	0.0000
	0.2143	-0.1964	-0.2500	0.6607	-0.3929	-0.5000	1.1071	-0.5893	-0.7500	1.5536	-0.7857
	-0.1429	0.2143	0.0000	-0.3571	0.4286	0.0000	-0.5714	0.6429	0.0000	-0.7857	0.8571

7 (again omitting normalization by Σ g; see <u>http://graphics.stanford.edu/courses/cs178-09/demos/deconvolution.m</u>) \odot 2009 Marc 1

Why is deconvolution hard?

- matrix A and blurred image b are typically very big
- for a 10 megapixel image
 - A has 10 million rows and 10 million columns
 - b has 10 million entries
- matrix A is typically <u>very sparse</u>
 mostly zeros

methods for solving big sparse systems of equations

- conjugate gradient descent
- etc.

Another reason deconvolution is hard

matrix A may be poorly conditioned

• a small change (or noise) in **b** causes a large change in **x**

Another reason deconvolution is hard

matrix A may be poorly conditioned

• a small change (or noise) in **b** causes a large change in **x**

equivalently, its Fourier transform may contain zeros
sinusoids of some frequencies will be missing from b

to be well conditioned, the filter shouldn't be smooth

• bad:

better:

• convolution by the first throws away detail, creating zeros

- convolution by the second makes many sharp copies
- + inverting an ill-conditioned A produces a noisy result

Blind deconvolution

sometimes you don't know x or A

• i.e. you don't know the sharp scene or the filter

solving blind deconvolution problems
use a *prior* assumption about what the unknown sharp scene x should look like

this is hard, and we're not very good at it
solutions typically contain ringing, or worse...

Removing camera shake [Fergus SIGGRAPH 2006]

deconvolve blurred image, using the statistics of natural scenes as a prior

blurred image

Photoshop Unsharp Mask

deconvolution

Removing camera shake [Yuan SIGGRAPH 2007]

 deconvolve long-exposure (blurred) image, using short-exposure (noisy) image as a prior

Removing motion blur [Raskar SIGGRAPH 2006]

continuous shutter

14

Removing motion blur [Raskar SIGGRAPH 2006]

continuous shutter

15

fluttered shutter

harman

Removing defocus

★ a.k.a. extended depth of field (EDOF)

- all-focus algorithm
- wavefront coding + deconvolution
- rubber focus + deconvolution

All-focus algorithm [Agarwala SIGGRAPH 2004]

© 2009 Marc Levo

Wavefront coding [Dowski 1995]

© 2009 Marc Levoy

20

Wavefront coding [Dowski 1995]

to the tothe to the ctual ie actua oth cu moothmagn he magn after deconvolution normal lens stopped down wavefront coded wavefront deconvolved normal 21

Slide credits

Andrew Adams