
Computational photography
techniques based on

deconvolution
CS 178, Spring 2009

Marc Levoy
Computer Science Department
Stanford University

© 2009 Marc Levoy

Removing camera shake

✦ Can you fix a blurry image by sharpening it in Photoshop?

2

(simulated blurry image)

© 2009 Marc Levoy

Removing camera shake

✦ Can you fix a blurry image by sharpening it in Photoshop?

3

(simulated blurry image)

© 2009 Marc Levoy

Removing camera shake, 2nd try

✦ camera shake can be modeled as a 2D convolution

✦ recall that discrete convolution replaces each pixel with a
linear combination of nearby pixels

✦ in linear algebra, a matrix replaces each element in a
vector with a linear combination of all other elements

∴ convolution can be formulated as matrix multiplication

4

⊗ =

© 2009 Marc Levoy

Convolution as matrix multiplication
✦ let the sharp scene be represented by a vector

✦ let the filter kernel be represented as a second vector

✦ the convolution becomes the matrix-vector product

5

f = 4 7 8 4 2 5 9 6 8 4 2[]

g = 1 2 3 2 1[]

where x = f T

f ⊗ g

and A is built from g as shown
Ax =

3 2 1 0 0 0 0 0 0 0 0

2 3 2 1 0 0 0 0 0 0 0

1 2 3 2 1 0 0 0 0 0 0

0 1 2 3 2 1 0 0 0 0 0

0 0 1 2 3 2 1 0 0 0 0

0 0 0 1 2 3 2 1 0 0 0

0 0 0 0 1 2 3 2 1 0 0

0 0 0 0 0 1 2 3 2 1 0

0 0 0 0 0 0 1 2 3 2 1

0 0 0 0 0 0 0 1 2 3 2

0 0 0 0 0 0 0 0 1 2 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

4
7
8
4
2
5
9
6
8
4
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

© 2009 Marc Levoy

Convolution as matrix multiplication
✦ let the sharp scene be represented by a vector

✦ let the filter kernel be represented as a second vector

✦ the convolution becomes the matrix-vector product

6

f = 4 7 8 4 2 5 9 6 8 4 2[]

g = 1 2 3 2 1[]

f ⊗ g

Ax =

3 2 1 0 0 0 0 0 0 0 0

2 3 2 1 0 0 0 0 0 0 0

1 2 3 2 1 0 0 0 0 0 0

0 1 2 3 2 1 0 0 0 0 0

0 0 1 2 3 2 1 0 0 0 0

0 0 0 1 2 3 2 1 0 0 0

0 0 0 0 1 2 3 2 1 0 0

0 0 0 0 0 1 2 3 2 1 0

0 0 0 0 0 0 1 2 3 2 1

0 0 0 0 0 0 0 1 2 3 2

0 0 0 0 0 0 0 0 1 2 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

4
7
8
4
2
5
9
6
8
4
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(Ax must be normalized by ∑g)

© 2009 Marc Levoy

Inverting convolution (deconvolution)

✦ if the blurred image is given by

✦ then the sharp scene can be recovered by

where

7

Ax = b
b

x = A−1b

x

A−1 =

 0.8571 -0.7857 0.0000 0.6429 -0.5714 0 0.4286 -0.3571 -0.0000 0.2143 -0.1429

 -0.7857 1.5536 -0.7500 -0.5893 1.1071 -0.5000 -0.3929 0.6607 -0.2500 -0.1964 0.2143

 0.0000 -0.7500 1.5000 -0.7500 -0.5000 1.0000 -0.5000 -0.2500 0.5000 -0.2500 0.0000

 0.6429 -0.5893 -0.7500 1.9821 -1.1786 -0.5000 1.3214 -0.7679 -0.2500 0.6607 -0.3571

 -0.5714 1.1071 -0.5000 -1.1786 2.2143 -1.0000 -0.7857 1.3214 -0.5000 -0.3929 0.4286

 0 -0.5000 1.0000 -0.5000 -1.0000 2.0000 -1.0000 -0.5000 1.0000 -0.5000 0.0000

 0.4286 -0.3929 -0.5000 1.3214 -0.7857 -1.0000 2.2143 -1.1786 -0.5000 1.1071 -0.5714

 -0.3571 0.6607 -0.2500 -0.7679 1.3214 -0.5000 -1.1786 1.9821 -0.7500 -0.5893 0.6429

 -0.0000 -0.2500 0.5000 -0.2500 -0.5000 1.0000 -0.5000 -0.7500 1.5000 -0.7500 0.0000

 0.2143 -0.1964 -0.2500 0.6607 -0.3929 -0.5000 1.1071 -0.5893 -0.7500 1.5536 -0.7857

 -0.1429 0.2143 0.0000 -0.3571 0.4286 0.0000 -0.5714 0.6429 0.0000 -0.7857 0.8571

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(again omitting normalization by ∑g; see http://graphics.stanford.edu/courses/cs178-09/demos/deconvolution.m)

© 2009 Marc Levoy

Why is deconvolution hard?

✦ matrix A and blurred image b are typically very big

✦ for a 10 megapixel image
• A has 10 million rows and 10 million columns
• b has 10 million entries

✦ matrix A is typically very sparse
• mostly zeros

✦ methods for solving big sparse systems of equations
• conjugate gradient descent
• etc.

8

© 2009 Marc Levoy

Another reason deconvolution is hard

✦ matrix A may be poorly conditioned
• a small change (or noise) in b causes a large change in x

9

?⊗ =

?⊗ =

A x = b

© 2009 Marc Levoy

Another reason deconvolution is hard

✦ matrix A may be poorly conditioned
• a small change (or noise) in b causes a large change in x

✦ equivalently, its Fourier transform may contain zeros
• sinusoids of some frequencies will be missing from b

✦ to be well conditioned, the filter shouldn’t be smooth
• bad: better:

• convolution by the first throws away detail, creating zeros
• convolution by the second makes many sharp copies

✦ inverting an ill-conditioned A produces a noisy result
10

© 2009 Marc Levoy

Blind deconvolution

✦ sometimes you don’t know x or A
• i.e. you don’t know the sharp scene or the filter

✦ solving blind deconvolution problems
• use a prior assumption about what the

unknown sharp scene x should look like

✦ this is hard, and we’re not very good at it
• solutions typically contain ringing, or worse...

11

© 2009 Marc Levoy

Removing camera shake
[Fergus SIGGRAPH 2006]

✦ deconvolve blurred image,
using the statistics of natural scenes as a prior

12

blurred image Photoshop Unsharp Mask deconvolution

blur kernel

© 2009 Marc Levoy

Removing camera shake
[Yuan SIGGRAPH 2007]

✦ deconvolve long-exposure (blurred) image,
using short-exposure (noisy) image as a prior

13

long exposure
(blurry)

joint deconvolutionshort exposure
(dark)

same, scaled up
(noisy)

© 2009 Marc Levoy

Removing motion blur
[Raskar SIGGRAPH 2006]

14

continuous shutter

© 2009 Marc Levoy

Removing motion blur
[Raskar SIGGRAPH 2006]

15

continuous shutter fluttered shutter

© 2009 Marc Levoy

Removing defocus

✦ a.k.a. extended depth of field (EDOF)

✦ all-focus algorithm

✦ wavefront coding + deconvolution

✦ rubber focus + deconvolution

18

© 2009 Marc Levoy

All-focus algorithm
[Agarwala SIGGRAPH 2004]

19

Now available in

Photoshop CS4 !!

1 2 3 4 all

© 2009 Marc Levoy

Wavefront coding
[Dowski 1995]

20

profile of
cubic phase plate

lens plus
cubic phase plate

ray trace through
a normal lens

MTFs through lens and cubic phase plate

© 2009 Marc Levoy

Wavefront coding
[Dowski 1995]

21

normal lens stopped down wavefront coded after deconvolution

normal wavefront deconvolved

© 2009 Marc Levoy

Slide credits
✦ Andrew Adams

22

