Noise and ISO

CS 178, Spring 2009

Marc Levoy Computer Science Department Stanford University

Outline

- examples of camera sensor noise
 - don't confuse it with JPEG compression artifacts
- probability, mean, variance, signal-to-noise ratio
- laundry list of noise sources
 - photon shot noise, dark current, hot pixels, fixed pattern noise, read noise
- + SNR (again), quantization, dynamic range, bits per pixel
- + ISO
- denoising
 - including aligning and averaging multiple shots
- night photography (Jesse Levinson)

Nokia N95 cell phone at dusk

8×8 blocks are JPEG compression
unwanted sinusoidal patterns within each block are JPEG's attempt to compress noisy pixels

processing included mild sharpeningthere wasn't much noise to remove

- ISO 200
- f/13.0
- 1/320 sec
- Canon
 - processed

Canon 5D II at dusk

Photon shot noise

- the number of photons arriving during an exposure varies from exposure to exposure and from pixel to pixel
- this number is governed by the Poisson distribution

Poisson distribution

- expresses the probability that a certain number of events will occur during an interval of time
- applicable to rare events that occur
 - with a known average rate, and

12

- independently of the time since the last event
- if on average λ events occur in an interval of time,
 the probability *p* that *k* events occur instead is

Mean and variance

+ the mean of a probability density function is $\mu = \int x p(x) dx$

- the variance of a probability density function is $\sigma^2 = \int (x - \mu)^2 p(x) dx$
- the mean and variance of the Poisson distribution are $\mu = \lambda$

$$\sigma^2 = \lambda$$

the standard deviation is

$$\sigma = \sqrt{\lambda}$$

13

Deviation grows slower than the average.

Poisson versus Normal distribution

 for large λ (>1000), the Poisson distribution is well approximated by a Gaussian (i.e. Normal) distribution

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)}{2\sigma^2}}$$

- in a Normal distribution, ~68% of the area falls within one standard deviation of the mean
- + for a Poisson distribution with $\lambda = 10$
 - on average 10 events will occur during the interval of time
 - there is a 68% chance the number of events will fall in the range $10 \pm \sqrt{10}$

Signal-to-noise ratio (SNR)

 $SNR = \frac{\text{mean pixel value}}{\text{standard deviation of pixel value}} = \frac{\mu}{\sigma}$

$$SNR (dB) = 20 \log_{10} \left(\frac{\mu}{\sigma} \right)$$

♦ example

if SNR improves from 100:1 to 200:1,
 it improves 20 log₁₀(200) - 20 log₁₀(100) = +6 dB

photons arrive in a Poisson distribution

$$\mu = \lambda$$
$$\sigma = \sqrt{\lambda}$$

• so
$$SNR = \frac{\mu}{\sigma} = \sqrt{\lambda}$$

- shot noise scales as square root of number of photons
- examples
 - doubling the width and height of a pixel increases its area by 4×, hence # of photons by 4×, hence SNR by 2× or +6 dB
 - opening the aperture by 1 f/stop increases the # of photons by $2\times$, hence SNR by $\sqrt{2}$ or +3 dB

17

Dark current

- electrons dislodged by random thermal activity
- increases linearly with exposure time
- increases exponentially with temperature
- varies across sensor, and includes its own shot noise

Canon 20D, 612 sec exposure

(http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/)

Hot pixels

- electrons leaking into well due to manufacturing defects
- increases linearly with exposure time
- increases with temperature, but hard to model
- changes over time, and every camera has them

Canon 20D, 15 sec and 30 sec exposures

© 2009 Marc Levoy

Fixing dark current and hot pixels

♦ example

20

- Aptina MT9P031 (in Nokia N95 cell phone)
- full well capacity = ~8500 electrons
- dark current = 25 electrons/pix/sec at 55°C

solution #1: chill the sensor

- Retiga 4000R bioimaging camera
- Peltier cooled 25°C below ambient
- full well capacity = 40,000 electrons
- dark current = 1.64 electrons/pix/sec

Fixed pattern noise (FPN)

- manufacturing variations across pixels, columns, blocks
- mainly in CMOS sensors
- doesn't change over time, so read once and subtract

Read noise

- thermal noise in readout circuitry
- again, mainly in CMOS sensors
- not fixed pattern, so only solution is cooling

Signal-to-noise ratio, 2nd try

 $SNR = \frac{\text{mean pixel value}}{\text{standard deviation of pixel value}} = \frac{\mu}{\sigma}$

$$= \frac{P Q_e t}{\sqrt{P Q_e t + D t + N_r^2}}$$

where

23

P = incident photon flux (photons/pixel/sec) $Q_e =$ quantum efficiency t = exposure time (sec) D = dark current (electrons/pixel/sec), including hot pixels $N_r =$ read noise (rms electrons/pixel), including fixed pattern noise

Signal-to-noise ratio, 2nd try

 $SNR = \frac{\text{mean pixel value}}{\text{standard deviation of pixel value}}$

 $= \frac{P Q_e t}{\sqrt{P Q_e t + D t + N_r^2}}$

examples

- Retiga 4000R = (1000 × 55%) / √(1000 × 55% + 1.64 + 12²)
 = 20.8:1 assuming 1000 photons/pixel/sec for 1 second
- Aptina MT9P031 = (1000÷11×69%) / √(1000÷11×69% + 25 + 2.6²)
 = 6.5:1 assuming pixels are 1/11 as large as Retiga's

Dynamic range

 $DR = \frac{\text{max output swing}}{\text{noise in the dark}} = \frac{\text{saturation level} - D t}{\sqrt{D t + M^2}}$

 $\sqrt{Dt+N_r^2}$

♦ examples

25

- Retiga 4000R = (40,000 1.64) / $\sqrt{(1.64 + 12^2)}$ electrons = 3,313:1 (11.7 bits) for a 1 second exposure, and
 - = 3,333:1 (11.7 bits) for a 1/60 second exposure
- Aptina MT9P031 = $(8500 25) / \sqrt{(25 + 2.6^2)}$ = 1500:1 (10.5 bits) for a 1 second exposure, but = 3200:1 (11.6 bits) for a 1/60 second exposure

determines useful ADC precision

after gamma correction (for JPEG), you only see ~8 bits

ISO

26

- amplifies signal before analog-to-digital conversion
 - avoids losing low signal due to quantization and any noise introduced after quantization (yes, there is some)
 - doubling ISO doubles the signal, which is linear with light, so equivalent to doubling exposure time, or minus 1 f/stop
- maximum ISO on Canon is 6400
 - higher ISOs implemented using multiplication after ADC?
- raising ISO improves SNR relative to multiplication after ADC, or equivalently, brightening in Photoshop
- but raising exposure time improves SNR faster, so
- maximize exposure time to the limits imposed by object motion, camera shake, or sensor saturation, then maximize ISO to the limit imposed by ADC saturation.

RAW (ISO 6400)

27

Gaussian blur, radius = 1.3

Canon denoising

- ✤ goal is to remove sensor noise
 - blurring works, but also destroys edges
 - I don't know what Canon does, but here's something that works...

Bilateral filtering [Tomasi ICCV 1998]

 assume the image is <u>piecewise</u> <u>constant</u> with noise added

 therefore, nearby pixels are probably a different noisy measurement of the same data

bluring doesn't work

 we should do a weighted blur where the weight is the probability a pixel is from the same piece of the scene

Bilateral filtering [Tomasi ICCV 1998]

- if the pixels are similar in intensity, the probability they are from the same piece of the scene is high
- so perform a convolution where the weight assigned to nearby pixels falls off
 - with increasing (*x*,*y*) distance from the pixel being blurred
 - with increasing intensity difference from the pixel being blurred
- ★ i.e. blur in the *∂omain* and *range* dimensions!

Gaussian blur, radius = 1.3

Canon denoising

RAW (ISO 6400)

 bilateral filtering can easily be extended to RGB

active area of research...

Averaging several short-exposure, high-ISO shots to avoid camera shake & reduce noise

Aligning a burst of short-exposure, high-ISO shots using the Casio EX-F1

Aligning on a foreground object using the Casio EX-F1

© 2009 Marc Levoy

Nonphotorealistic astrophotography [Akers IEEE Visualization 2003]

- extract strip near illumination horizon from each image
- blend together to produce a single image where every point on the moon's surface exhibits grazing illumination

David Akers, Relighting of Moon, 2003

Slide credits

✦ Eddy Talvala

 Filippov, A., *How many bits are really needed in the image pixels?* (sic), http://www.linuxdevices.com/articles/AT9913651997.html