Optics I: lenses and apertures

CS 178, Spring 2009

Begun Tuesday, April 7, finished Thursday, April 9. Note added to slide 61 on 5/4/09, and to slide 56 on 6/4/09.

Marc Levoy

Computer Science Department
Stanford University

Announcements (from whiteboard)

Reading for this week:

- London 3 -lens
- London 15-view camera
- Hecht, Optics, 5.1-5.3 (in reader)

Assignment \#2-spoits \& action-due Sunday eve

Outline

- why study lenses?
- geometrical optics
- depth of field
- aberrations
- vignetting, glare, and other lens artifacts
- diffraction
- measuring lens quality

Cameras and their lenses

single lens reflex
(SLR) camera

digital still camera (DSC),
i.e. point-and-shoot

Lens quality varies

- Why is this toy so expensive?
- EF $70-200 \mathrm{~mm}$ f/2.8L IS USM
- \$1700

- Why is it better than this toy?
- EF 70-300mm f/4-5.6 IS USM
- \$550
- Why is it so complicated?

Cutaway view of a real lens

Vivitar Series $190 \mathrm{~mm} \mathrm{f} / 2.5$
Cover photo, Kingslake, Optics in Photography

Image quality varies

(luminous-landscape)

Zoom lens versus prime lens

Parameters of lenses

- zoom versus prime
- focal length (field of view)
- maximum aperture (minimum F-number, like f/2.8)
- varies with focal length in a zoom lens
- image stabilization, faster autofocus, etc.
- minimum focusing distance
- other quality issues
- special-purpose lenses
- fisheye
- macro (1:1)
- perspective control (a.k.a. tilt-shift)

Physical versus geometrical optics

- light can be modeled as traveling waves
- the perpendiculars to waves can be drawn as rays
- diffraction causes these rays to bend, e.g. at a slit
- geometrical optics assumes
- $\lambda \rightarrow 0$
- no diffraction
- straight rays in free space (a.k.a. rectilinear propagation)

Physical versus geometrical optics

Some definitions

(Hecht)

- object space on the left; image space on the right
- if rays leaving a point arrive at another point (as shown), the optical system is called stigmatic for these two points
+ S and P are called conjugate points

Snell's law of refraction

This ratio is flipped. The correct form is $\mathrm{nt} / \mathrm{ni}$. This error triggered all the errors that followed in class. Each with a comment box like this one. Sorry about that!

Snell is law

$$
\frac{x_{i}}{x_{t}}=\frac{\sin \theta_{i}}{\sin \theta_{t}}=\frac{n_{i}}{n_{t}}
$$

where n is speed of light in raccoon/ speed in medium j

Snell's law of refraction

- index of refraction is defined as the ratio between the speed of light in a vaccum / speed in some medium

Typical refractive indices (n)

+ air $=1.0$
+ water = 1.33
- glass = $1.5-1.8$
+ microscope immersion oil $=1.52$
+ when transiting from air to glass, light bends towards the normal
- when transiting from glass to air,
 light bends away from the normal
+ light striking a surface perpendicularly does not bend

Q. What shape should an interface be

 to make parallel rays converge to a point?
A. a hyperbola

- so lenses should be hyperbolic!

Spherical lenses

(Hecht)

(wikipedia)

- two roughly fitting curved surfaces ground together will eventually become spherical
- spheres don't bring parallel rays to a point
- this is called spherical aberration
- nearly axial rays behave best

The paraxial approximation
Paraxial approximation

$$
\begin{aligned}
& f=50 \mathrm{~mm} \\
& N=F / 2.0 \\
& A=\frac{F}{N}=25 \mathrm{~mm} \\
& \phi=\operatorname{atan}\left(\frac{25}{2 \times 50}\right)=14^{\circ} \\
& 2 \phi=28^{\circ} \\
& \sin 14^{\circ}=2419 \\
& \tan 14^{\circ}=2493 \\
& h=43.3 \mathrm{~mm} \operatorname{diag} \\
& F O^{\circ}=2 \tan \left(\frac{h}{2 f}\right)=47^{\circ}
\end{aligned}
$$

The paraxial approximation is

a.k.a. first-order optics

- assume first term of $\sin \phi=\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\frac{\phi^{7}}{7!}+\ldots$
- i.e. $\sin \phi \approx \phi$
+ assume first term of $\cos \phi=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\frac{\phi^{6}}{6!}+\ldots$
- i.e. $\cos \phi \approx 1$
- so $\tan \phi \approx \sin \phi \approx \phi$

Paraxial refraction and focusing

- this derivation uses classical paraxial notation (letters for angles, instead of Greek symbols)
- Hecht's derivation uses Fermat's principle instead of Snell's law, but the result is the same

Paraxial refraction and focusing

or

$$
\begin{aligned}
& \text { Snell } \frac{\sin i}{\sin i^{\prime}}=\frac{n}{n^{\prime}} \\
& \text { Palatial approx } \\
& \begin{array}{l}
\text { This is flipped too. It should } \\
\text { be } n^{\prime} / n \text {. Then the paraxial } \\
\text { approximation should read } i / \\
i^{\prime}=n / n^{\prime} \text { or ni ni ni' las I had } \\
\text { originally written). The rest } \\
\text { of the derivation (below) is } \\
\text { correct. Ignore the question } \\
\text { mark } \text { I wrote on the } \\
\text { whiteboard (below). }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& i=u+a \\
& u \approx h / z \\
& u^{\prime} \approx h / z^{\prime} \\
& n(u+a) \approx n^{\prime}\left(u^{\prime}-a\right) \\
& n\left(h / z+h(r) \approx n^{\prime}\left(h / z^{\prime}-h / r\right)\right. \\
& n / z+n / r \approx n^{\prime}, ~ \\
& n / z^{\prime}-h^{\prime} / r \\
& \\
& \\
& -\frac{n}{2}+\frac{n^{\prime}}{2} \approx \frac{h^{\prime}-h}{r}
\end{aligned}
$$

Paraxial refraction and focusing

(Hecht)

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

Paraxial refraction and focusing

- the case where s_{i} is at infinity...

Thin lens equation,
 a.k.a. lensmaker's formula

(Hecht)

- we just derived cases (a) and (b)
- for a thin lens in air, apply (c), then (a) with air and glass reversed, then set $\mathrm{d}=0$

Thin lens equation, a.k.a. lensmaker's formula

(Hecht)

- we just derived cases (a) and (b)
* for a thin lens in air, apply (c), then (a) with air and glass reversed, then set $\mathrm{d}=0$

Thin lens equation, a.k.a. lensmaker's formula

(Hecht)

Thin lens equation, a.k.a. lensmaker's formula

(Hecht)

$$
\frac{1}{S_{0}}+\frac{1}{S_{i}}=\left(n_{l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

(Hecht, eqn 5.15)

Gaussian lens formula

- a geometrical derivation
- begins with Gauss' ray diagram

Gaussian lens formula

- positive s_{i} is rightward, positive s_{o} is leftward
- positive y is upward

Gaussian lens formula

$\frac{\left|y_{i}\right|}{y_{o}}=\frac{s_{i}}{s_{o}}$

Gaussian lens formula

$\frac{\left\|y_{i}\right\|}{y_{o}}=\frac{s_{i}}{s_{o}}$ and $\frac{\left\|y_{i}\right\|}{y_{o}}=\frac{s_{i}-f}{f}$
\cdots

Changing the focus distance (again)

- note that at $s_{o}=s_{i}=2 f$,
we have 1:1 imaging,
because

$$
\frac{1}{2 f}+\frac{1}{2 f}=\frac{1}{f}
$$

- in 1:1 imaging, if the sensor is 36 mm wide, an object 36 mm wide will fill the frame

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

Thick lenses

- an optical system may contain many lenses, but can be characterized by a few numbers

Center of perspective

(Hecht)

- in a thin lens, the chief ray traverses the lens (through its optical center) without changing direction
- in a thick lens, the intersections of this ray with the optical axis are called the nodal points
- for a lens in air, these coincide with the principal points
- the first nodal point is the center of perspective

Convex versus concave lenses

(Hecht)

rays from a convex lens converge

rays from a concave lens diverge

- positive focal length f means parallel rays from the left converge to a point on the right
- negative focal length f means parallel rays from the left converge to a point on the left (dashed lines above)

Convex versus concave lenses

rays from a convex lens converge

...producing a real image

rays from a concave lens diverge

...producing a virtual image

Convex versus concave lenses

...producing a real image

...producing a virtual image

A menagerie of lenses

Q. Given the lensmaker's formula, how do you tell if parallel rays entering a lens will converge or diverge?

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\left(n_{1}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{1}{f}
$$

The power of a lens

$$
P=\left(n_{l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{1}{f}
$$

- units are meters ${ }^{-1}$
- a.k.a. diopters
(wikipedia)
- my eyeglasses have the prescription
- right eye: - 0.75 diopters
- left eye: -1.00 diopters
Q. What's wrong with me?
A. Myopia

Newtonian form of the lens equation

(Hecht)

$\frac{\left|y_{i}\right|}{y_{o}}=\frac{s_{i}}{s_{o}}$ and $\frac{\left|y_{i}\right|}{y_{o}}=\frac{s_{i}-f}{f}$ imply $x_{o} x_{i}=f^{2} \quad$ (Hecht, eqn 5.23)

Magnification

- lateral magnification

$$
\begin{equation*}
M_{T} \triangleq \frac{y_{i}}{y_{o}}=-\frac{s_{i}}{s_{o}} \tag{Hecht,eqn5.24}
\end{equation*}
$$

$x_{o} x_{i}=f^{2}$

- negative for a convex lens, because it inverts the image
- longitudinal magnification

$$
M_{L}=\frac{d x_{i}}{d x_{o}}=\frac{-f^{2}}{x_{o}^{2}}=-M_{T}^{2} \quad(\text { Hecht, eqn } 5.25)
$$

- equal to the (negative) square of lateral magnification

Example: $100 \times$ microscope objective

+ 1 micron laterally on specimen becomes 100 microns at a microscope's camera sensor (about 15 pixels)
+ 1 micron axially on specimen becomes 10,000 microns $(10 \mathrm{~mm})$ at the sensor - well beyond the depth of focus
- depth of field of a $100 \times$ objective is less than 1 micron

Lenses perform a 3D perspective transform

http://graphics.stanford.edu/courses/ cs178-09/applets/thinlens.swf

- lenses transform a 3D object to a 3D image; the sensor extracts a 2 D slice from that image
- as an object moves linearly toward the camera, its image moves non-proportionately
- as you move a sensor (or lens) linearly, the in-focus object plane moves non-proportionately
+ as you refocus a camera, the image changes size !

Lenses perform a 3D perspective transform

Stops

- in photographic lenses, the aperture stop (A.S.) is typically in the middle of the lens system
- in a digital camera, the field stop (F.S.) is the edge of the sensor; no physical stop is needed

Pupils

- the entrance pupil is the image of the aperture stop as seen from an axial point on the object
- the exit pupil is the image of the aperture stop as seen from an axial point on the image plane
* the center of the entrance pupil is the center of perspective - you can find this point by following two lines of sight

Depth of field

$$
N=\frac{f}{A}
$$

- lower N means a wider aperture and less depth of field

Circle of confusion (C)

- C depends on sensing medium, reproduction medium, viewing distance, human vision,...
- for print from 35 mm film, 0.02 mm is typical
- for high-end SLR, 6μ is typical (1 pixel)
- less if downsizing for web, or lens is poor

Depth of field formula

- DoF is asymmetrical around the in-focus object plane
- conjugate in object space is typically bigger than C

Depth of field formula

- DoF is asymmetrical around the in-focus object plane
- conjugate in object space is typically bigger than C

Depth of field formula

Depth of field formula

$$
D_{\text {TOT }}=D_{1}+D_{2}=\frac{2 N C U^{2} f^{2}}{f^{4}-N^{2} C^{2} U^{2}}
$$

- $N^{2} C^{2} D^{2}$ can be ignored when conjugate of circle of confusion is small relative to the aperture

$$
D_{T O T} \approx \frac{2 N C U^{2}}{f^{2}}
$$

- where
- N is F-number of lens
- C is circle of confusion (on image)
- U is distance to in-focus plane (in object space)
- f is focal length of lens

$$
D_{\text {TOT }} \approx \frac{2 N C U^{2}}{f^{2}}
$$

+ $N=\mathrm{f} / 4.1$
$C=2.5 \mu$
$U=5.9 \mathrm{~m}\left(19^{\prime}\right)$
$f=73 \mathrm{~mm}$ (equiv to 362 mm)
$D_{\text {TOT }}=132 \mathrm{~mm}$
- 1 pixel on this video projector $C=2.5 \mu \times 2816 / 1024$ pixels $D_{E F F}=363 \mathrm{~mm}$

Canon MP-E
65 mm 5:1 macro

These numbers were replaced on 6/4/09, after a student pointed out that they didn't work out. I'm still not confident in them.
$+N=\mathrm{f} / 2.8$
$C=6.4 \mu$
$U=31 \mathrm{~mm}$
$f=65 \mathrm{~mm}$
(use $N^{\prime}=\left(1+M_{T}\right) N$ at short conjugates $\left(M_{T}=5\right.$ here $\left.)\right)=\mathrm{f} / 16$ $D_{\text {TOT }}=0.048 \mathrm{~mm}!(48 \mu)$

Sidelight: macro lenses

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

Q. How can the Casio EX-F1 at 73 mm and the Canon MP-E 65 mm macro, which have similar f 's, have such different focusing distances?

normal

macro

- A. Because they are built to allow different si
- this changes s_{o}, which changes magnification $M_{T} \triangleq-s_{i} / s_{o}$
- macro lenses are well corrected for aberrations at short s_{o}

Extension tube:

converts a normal lens to a macro lens

- toilet paper tube, black construction paper, masking tape
+ camera hack by Katie Dektar (CS 178, 2009)

DoF is linear with aperture

$$
D_{\text {Tor }} \approx \frac{2 \sqrt{n} C U^{2}}{f^{2}}
$$

http://graphics.stanford.edu/courses/ cs178-09/applets/dof.swf

DoF is quadratic with focusing distance

(we already know this, because M_{T} scales with U , and M_{L} goes as the square of M_{T})

$$
D_{\text {TOT }} \approx \frac{2 N C \boxed{U^{2}}}{f^{2}}
$$

http://graphics.stanford.edu/courses/ cs178-09/applets/dof.swf

Closer to subject

Farther from subject
10 feet

Hyperfocal distance

- the back depth of field

$$
D_{2}=\frac{N C U^{2}}{f^{2}-N C U}
$$

Last slide covered on Tuesday. The remaining slides were covered on Thursday.

+ becomes infinite if

$$
U \geq \frac{f^{2}}{N C} \triangleq H
$$

I incorrectly stated in class that when you plug $U=f^{\prime} 2 /$ NC into the formula for D2 you get 0/0. You get H/O, which is infinity. And when you plug it into the formula for DI you get H/2, as shown on the slide.

$$
+N=£ / 6.3
$$

- In that case, the front depth of field becomes

$$
D_{1}=\frac{H}{2}
$$

This calculation earlier (and incorrectly) assumed an HD projector. The numbers actually work out for a normal projector, as shown. Note added 5/4/09.
http://graphics.stanford.edu/courses/ cs178-09/applets/dof.swf

- so if I had focused at 32 m , everything from 16 m to infinity would be in focus on an HD projector, including the men

DoF is inverse quadratic with focal length

DoF and the dolly-zoom

- if we zoom in (change f)
and stand further back (change U) by the same factor

$$
D_{T O T} \approx \frac{2 N C U^{2}}{f^{2}}
$$

- the depth of field stays the same!
- useful for macro when you can't get close enough

Parting thoughts on DoF: the zen of bokeb

- the appearance of sharp out-of-focus features in a photograph with shallow depth of field
- determined by the shape of the aperture
- people get religious about it
- but not every picture with shallow DoF has evident bokeh...

Natasha Gelfand (Canon 100 mm f/2.8 prime macro lens)

Parting thoughts on DoF: seeing through occlusions

For slide credits, see end of second optics talk.

- depth of field is not a convolution of the image
- i.e. not the same as blurring in Photoshop
- DoF lets you eliminate occlusions, like a chain-link fence

Seeing through occlusions

