Panoramas

CS 178, Spring 2009

Marc Levoy
Computer Science Department
Stanford University

Announcements

- from whiteboard

Final exam

- Tues, June 9, 7-10pm, TCSEQ 200
- 2 hours, closed book
- lecture notes \& London
- mainly on material since midterm
- see final-review PDF file

What is a panorama?

- a wider-angle image than a normal camera can capture
- any image stitched from overlapping photographs
- a cropping aspect ratio on a normal shot

Outline

- capturing panoramas
- stitching together a panorama
- perspective versus cylindrical projection

Panoramic cameras

flatback panoramic camera

swing-lens panoramic camera

SLR on panning clamp

motorized pan-tilt head ${ }_{\text {marc Levoy }}$

Operation of swing-lens camera

- lens rotates, film is curved (blue curve at bottom), and a slit (located near the film plane?) rotates with the lens, producing a cylindrical projection of the world
- straight lines don't remain straight in this projection
- the in-focus surface is curved (red curve at top), unlike the (nearly) flat field of a normal photograph

Swing-lens panoramic images

101 Ranch, Oklahoma, circa 1920

Panoramic cameras

flatback panoramic camera

swing-lens panoramic camera

SLR on panning clamp

motorized pan-tilt head ${ }_{\text {marc Levoy }}$

Lee Frost, Val D'Orcia, Tuscany, Italy

Lee Frost, Volubilis, Morocco

Lee Frost,
Vertical Panoramas, Santorini

Matthew Scott, Cuernos del Paine, Chile

Stitching images together to make a mosaic

Stitching images together to make a mosaic

- given a set of images that should stitch together
- by rotating the camera around its center of perspective
- step 1: find corresponding features in a pair of image
- step 2: compute transformation from $2^{\text {nd }}$ to $1^{\text {st }}$ image
- step 3: warp $2^{\text {nd }}$ image so it overlays $1^{\text {st }}$ image
- step 4: blend images where they overlap one another
\downarrow repeat for $3^{\text {rd }}$ image and mosaic of first two, etc.

Stitching images together to make a mosaic

May be taught by Fei-Fei Li in 2009-2010, not Sebastian Thrum as I said in class.

Take CS 223B:
Computer Vision (Win)

- given a set of images that should - by rotating the amer around it Take CS 448F: - step 1: find corresponding feat \rightarrow step 2: compute transformation Photography and Vision (Mut)
\checkmark step 3: warp ind in page si
\rightarrow step 4: blend images whys
- repeat for $3^{\text {rd }}$ image and

Also CS 448A:
Computational Photography (Win)

Ill be teaching this course, possibly with help from Prof. Fredo Durand of MIT.

What kind of transformation do we need?

Quick review of perspective projection

O center of perspective (c.p.)

- = projection of feature in scene onto picture plane (p.p)
- these three image formation methods will produce the same perspective view on the p.p. (except for the size of the view)
- all that matters is position of c.p. and orientation of p.p.

Reprojecting an image onto a different picture plane

the sidewalk art of Julian Beever

- the view on any picture plane can be projected onto any other plane in 3D without changing its appearance as seen from the center of projection

Reprojecting panoramic images to a common picture plane

- the common picture plane of the mosaic replaces having had a wide-angle (non-fish-eye) camera in the first place

Homography

- perspective mapping between two p.p.'s using the same center of projection is called a homography

Summary of perspective stitching

+ pick one image, typically the central view (red outline)
- warp the others to its plane
+ blend

Cylindrical panoramas

- What if you want a 360° panorama?

- project each image onto a cylinder
- a cylindrical image is a rectangular array

Cylindrical panoramas

- What if you want a 360° panorama?

- project each image onto a cylinder
- a cylindrical image is a rectangular array
* to view without distortion, reproject a portion of the cylinder onto a picture plane representing the display screen

Example

Using 4 shots instead of 3

Back to 3 shots

surface of cylinder

cylindrical reprojection

Back to 3 shots

surface of cylinder

cylindrical reprojection

Back to 3 shots

perspective reprojection

2nd reprojection to a plane for display

- imagine photographing the inside of a cylinder that is wallpapered with this panorama
- if your FOV is narrow, your photo won't be too distorted

Spherical panoramas

+ 1st reprojection is to a sphere instead of a cylinder
+ can't store as rectangular array without distortion

Slide credits

+ Fredo Durand
- Alyosha Efros
+ Steve Seitz
+ Rick Szeliski
+ Frost, Lee, Panoramic Photography, F+W Publications, 2005.

