Color I:

 trichromatic theory

 trichromatic theory CS 178, Spring 2010

Marc Levoy
Computer Science Department
Stanford University

Outline

- spectral power distributions
+ color response in animals and humans
+3 D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
+ additive versus subtractive color mixing
- cylindrical color systems used by artists (and Photoshop)
+ chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping

Newton's Experimentum Crucis

- sunlight can be divided into colors using a prism
- these colors cannot be further divided using a 2 nd prism
+ experiment performed 1665, drawing made in 1672

Newton's Experimentum Crucis

(Robin)

- alternatively, the divided colors can be recombined using a lens and 2 nd prism into a new beam that has exactly the same properties as the original

The visible light spectrum

- wavelengths between 400 nm and $700 \mathrm{~nm}(0.4 \mu-0.7 \mu)$
- exactly the colors in a rainbow

The visible light spectrum

- wavelengths between 400 nm and $700 \mathrm{~nm}(0.4 \mu-0.7 \mu)$
- exactly the colors in a rainbow

Spectral power distribution (SPD)

- units of power are watts (joules per second)
- shown here are spectra of common illumination sources
- plots above are relative amounts (\%) of each wavelength

Interaction of light with matter

- spectrum of illumination is multiplied wavelength-bywavelength by reflectance spectrum of object
- cause is absorption by the material
- so the spectrum you see depends on the illumination!
- transmittance operates the same way

Examples of reflectance spectra

- two different spectra may appear alike to us
- white petal and white flower (above left)
- these are called metamers
. \quad Newton observed this, but could not explain it

Outline

- spectral power distributions
+ color response in animals and humans
+3 D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
- additive versus subtractive color mixing
+ cylindrical color systems used by artists (and Photoshop)
- chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping

Monochromats

(contents of whiteboard)

1

1. organisms having only one kind of retinal receptor cannot distinguish changes in intensity from changes in wavelength, hence they have no color discrimination

- for example a unit amount of λ_{1} versus λ_{2} above
- or a unit amount of λ_{1} versus half as much of λ_{3} (assuming the sensitivity to λ_{3} is twice the response to λ_{1})

Dichromats (contents of whiteboard)

2. this organism can discrimate a response in the range wavelengths covered by A versus B, but cannot discriminate with those ranges
3. this organism has color discrimination over the range of wavelengths shown

- for each wavelength within this range, the ratio of responses of receptors A and B is unique; hence the organism can identify which wavelength (e.g. λ_{1} or λ_{2}) it's looking at

4. this organism has a larger range of color vision

Trichromats (contents of whiteboard)

5. humans can discrimate wavelengths from 400 nm to 700 nm

- we can also discriminate mixtures of wavelengths that dichromats cannot; this will become clearer later
- at the retinal level, our response to light is linear
a. if the response to a unit stimulus at λ_{1} of is $\left(\rho_{1}, \gamma_{1}, \beta_{1}\right)$, and to a unit stimulus at λ_{2} is $\left(\rho_{2}, \gamma_{2}, \beta_{2}\right)$, then the response to a superposition of stimuli λ_{1} and λ_{2} is $\left(\rho_{1}+\rho_{2}, \gamma_{1}+\gamma_{2}, \beta_{1}+\beta_{2}\right)$
b. the response to n units of a stimulus at λ_{1} is ($n \rho_{1}, n \gamma_{1}, n \beta_{1}$)
c. a system that obeys superposition (a) and scaling (b) is linear

Human response to an arbitrary stimulus

spectrum of stimulus arriving in one small area on retina \times
spectral sensitivity of each type of cone (L,M,S) $=$
multiply wavelength-bywavelength to get response spectra

$$
\int
$$

integrate over wavelengths to get total response for that type of cone $\longrightarrow \rho$

\qquad

Wavelength, nm

Human response to an arbitrary stimulus

- stated another way, given a stimulus spectrum $L_{e}(\lambda)$, the human response to it (ρ, γ, β) are the integrals over all visible wavelengths of our responses

$$
\begin{aligned}
& L_{e}(\lambda) \rho(\lambda), \\
& L_{e}(\lambda) \gamma(\lambda), \\
& L_{e}(\lambda) \beta(\lambda)
\end{aligned}
$$

to each constituent wavelength λ, i.e.

$$
(\rho, \gamma, \beta)=\left(\int_{400 n m}^{700 n m} L_{e}(\lambda) \rho(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \gamma(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \beta(\lambda) d \lambda\right)
$$

Outline

- spectral power distributions
- color response in animals and humans
+3 D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
+ additive versus subtractive color mixing
- cylindrical color systems used by artists (and Photoshop)
- chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping

Human 3D colorspace

+ the three types of cones in our retina (Long, Medium, Short wavelength) define the axes of a three-dimensional space
- our response to any stimulus spectrum can be summarized by three numbers (ρ, γ, β) and plotted as a point in this space
- our responses to all visible single-wavelength spectra (a.k.a. pure wavelengths λ, i.e. positions along the rainbow), if connected together, form a curve in this space, called the locus of spectral colors; the sequence of (ρ, γ, β) numbers form the tristimulus sensitivity functions $\rho(\lambda), \gamma(\lambda)$, and $\beta(\lambda)$

sensitivity functions

spectral locus

Properties of human 3D colorspace (1 of 2) (contents of whiteboard)

1. our response to any mixture $(\Sigma=1)$ of two pure wavelengths falls on a line connecting the responses to each wavelength
2. our response to any mixture $(\Sigma=1)$ of three pure wavelengths falls on a triangle connecting the responses to each wavelength; our response to any mixture ($\Sigma \leq 1$) of three pure wavelengths falls in a tetrahedron defined by this triangle and the origin
3. our responses to all possible mixtures $(\Sigma \leq 1)$ of all visible wavelengths forms an irregular volume called the gamut of perceivable colors, equal to the convex hull of the spectral locus

Properties of human 3D colorspace (2 of 2) (contents of whiteboard)

4. to a deuteranope - a color-blind person who is missing their mediumwavelength receptor, i.e. their gamma receptor - this diagram is squashed into the rectangle shown above on the rho-beta plane

- as a result, spectra whose (ρ, γ, β) responses lie along the dotted lines cannot be distinguished; they will appear as the same color, i.e. as metamers
- by a similar argument, many spectra distinguishable to pentachromats (e.g. Mallard ducks) are indistinguishable to trichromats (humans)

Color blindness

The advantage of being color blind

- the maze (at left) is recreated (at right) using subtle intensity differences, but overridden by stronger red-green color differences
- only a deuteranope can see the maze at right

Canon 30D color filters

+ you want the camera's R, G, and B color filters to have the same spectral sensitivities as our L, M, and S cones
- so that there are no objects in the real world that are metamers to one system and not the other
- otherwise, colored patterns the camera sees might be invisible to a person (bad), or patterns you see might be invisible to a camera (also bad)

filter transmissivity

http://graphics.stanford.edu/courses/ cs178/applets/locus.html

spectral locus

Outline

- spectral power distributions
- color response in animals and humans
- 3D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
+ additive versus subtractive color mixing
- cylindrical color systems used by artists (and Photoshop)
- chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping

Maxwell's color matching experiment

- Maxwell actually used a slightly different procedure
- see http://www.handprint.com/HP/WCL/color6.html for details
- the procedure below is used in modern versions of the experiment

Maxwell's color matching experiment (summary of live demo)

1

1. given a stimulus wavelength, the amount of each primary required to match it is given by three numbers ($\bar{r}, \bar{g}, \bar{b}$)
2. some stimuli cannot be matched unless first desaturated by adding a primary to it before matching; the amount added is denoted by negative values of r, g, or b
3. the sequence of $(\bar{r}, \bar{g}, \bar{b})$ values, some negative, required to match the locus of spectral colors across all λ, form the trichromatic matching functions $r(\lambda), g(\lambda)$, and $b(\lambda)$ for a particular set of 3 primaries

Young-Helmholtz trichromatic theory

(1773-1829)

James Clerk Maxwell
(c. 1860)

Hermann von Helmholtz
(1821-1894)

- spectra can be visually matched using mixtures of primary colors; such matches are called metamers
* due to the linearity of human retinal response, given a stimulus spectrum $L_{e}(\lambda)$, the amounts of each primary R, G, B required to match it, for any particular choice of 3 primaries, are the integrals over all visible wavelengths of the amounts $r(\lambda), g(\lambda)$, and $b(\lambda)$ required to match each constituent wavelength λ, i.e.

$$
(R, G, B)=\left(\int_{400 n m}^{700 n m} L_{e}(\lambda) \bar{r}(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \bar{g}(\lambda) d \lambda, \int_{400 n m}^{700 n m} L_{e}(\lambda) \bar{b}(\lambda) d \lambda\right)
$$

3 D interpretation of color matching
 I forgot to make the second point below about non-coplanar primaries in class. If you superimpose two of the three primaries (i.e. make

 them the same wavelength), then the gamut of reproducible colors collapses from a 30 volume to a 20 plane. More interestingly, if you convert one of the primaries to a custom SPD, you can create a vector in rho-gamma-beta space that lies in the plane of the other two primaries without coinciding with either of them. This will take some fiddling, but it too creates a 2 D gamut. Try it!- our response to varying amounts of a primary forms a vector in (ρ, γ, β) space, rooted at the origin
+ to provide a normal range of color vision, three primaries are required, and their vectors must not lie on a plane
+ our responses to all possible mixtures $(\Sigma \leq 1)$ of three primaries form a tetrahedron called the gamut of reproducible colord for these primaries

RGB matching functions

http://graphics.stanford.edu/courses/ cs178/applets/locus.html

3D interpretation of color matching

- the spectrum of each of the three primaries can be a pure wavelength (1) or a mixture of wavelengths (2)
+ impure primaries have a smaller gamut in (ρ, γ, β) space
- additional primaries can be added to increase the gamut

Outline

- spectral power distributions
- color response in animals and humans
- 3D colorspace of the human visual system
- and color filter arrays in cameras
- reproducing colors using three primaries
+ additive versus subtractive color mixing
+ cylindrical color systems used by artists (and Photoshop)
- chromaticity diagrams
- color temperature and white balancing
- standardized color spaces and gamut mapping

Additive versus subtractive mixing

- demo using color guns and filters

Additive versus subtractive mixing

http://graphics.stanford.edu/courses/cs178/ applets/ColorMixing-narrowCMY.swf

- superimposed colored lights or small adjacent dots combine additively - by adding their spectra wavelength-by-wavelength
- layered dyes or sequenced color filters combine subtractively - by multiplying their transmittance spectra wavelength-by-wavelength

Additive versus subtractive mixing

http://graphics.stanford.edu/courses/cs178/ applets/colormixing.html

- superimposed colored lights or small adjacent dots combine additively - by adding their spectra wavelength-by-wavelength
- layered dyes or sequenced color filters combine subtractively - by multiplying their transmittance spectra wavelength-by-wavelength

Additive versus subtractive mixing

- narrow spectra, widely spaced in wavelength, are best for primaries that are to be combined additively
- wide spectra that overlap are best for primaries that are to be combined subtractively, but product of all three must be black
- the particular spectra chosen is flexible; additive primaries need not be R,G,B, nor subtractive primaries C,M,Y
- additional primaries may be added to either system, resulting in a larger gamut of reproducible colors; adding black to a subtractive system (called CMYK) ensures a deep black

Color printing

- patches of the 3 subtractive primaries (C,M,Y) overlap partially on the page, making patches of 8 meta-primaries (Wh,C,M,Y,CM,CY,MY,CMY), which combine additively in the eye when viewed from a distance
- these effects are modeled by the Neugebauer equations
- two spectra that match (i.e. are metamers) under one illuminant may not match under another
- clothes that match in the store may not match outdoors

light is reflected

illumination by an object

reflectance

