
Appears in Proc. First International Symposium on 3D Data Processing, Visualization, Transmission

Filling Holes in Complex Surfaces using Volumetric Diffusion

James Davis Stephen R. Marschner Matt Garr Marc Levo y

Computer Science Department
Stanford University

Figure 1: At left is a photograph of the head of Michelangelo’s David. At right is a rendered 3D model of a section of his hair (corre-
sponding to the square in the photograph). The section is 75 mm wide on the statue, and the spacing between triangle vertices is 1.0 mm.
Although this surface was scanned dozens of times (from many different angles), occlusions prevented access to the deepest crevices.
The hole highlighted in this rendering has a complex shape and multiple boundary components, i.e. islands floating in the hole. The
largest boundary component contains 905 edges. (Hidden portions of this boundary are indicated with broken lines.)

Abstract
We address the problem of building watertight 3D

models from surfaces that contain holes − for example,
sets of range scans that observe most but not all of a sur-
face. We specifically address situations in which the holes
are too geometrically and topologically complex to fill
using triangulation algorithms. Our solution begins by
constructing a signed distance function, the zero set of
which defines the surface. Initially, this function is
defined only in the vicinity of observed surfaces. We then
apply a diffusion process to extend this function through
the volume until its zero set bridges whatever holes may
be present. If additional information is available, such as
known-empty regions of space inferred from the lines of
sight to a 3D scanner, it can be incorporated into the diffu-
sion process. Our algorithm is simple to implement, is
guaranteed to produce manifold non-interpenetrating sur-
faces, and is efficient to run on large datasets because
computation is limited to areas near holes.

1. Introduction
Modern rangefinding systems can measure the shape

of an object’s surface with high accuracy and resolution.
However, these systems often cannot observe the entire
surface, so the resulting 3D models may be incomplete.
The most fundamental cause of holes is occlusion −
recesses too deep to be observed using a particular trian-
gulation angle. However, holes can also be caused by low
reflectance, constraints on scanner placement, or simply
missing views.

In some applications, an incomplete surface model is
appropriate − it represents the surface exactly as mea-
sured, without adding fabricated geometry. Howev er,
other applications require a watertight surface that bounds
a volume of space. Examples include computations of
physical properties, fabrication of physical replicas, or
presentation in contexts like schools and museums where
holes would be confusing and unattractive. Algorithms



that are used in these applications often require that sur-
faces are valid 2-manifolds and/or that the geometry does
not intersect itself.

To allow such uses while maintaining the data’s accu-
racy and integrity, we need a surface reconstruction
method that preserves the geometry where it exists and
smoothly transitions to plausible geometry in unobserved
areas. For scientific applications, it is also important to
know which parts of the surface were observed and which
parts are hypothetical.

One difficulty of hole filling is choosing appropriate
topology. Many holes are simple and can be filled with
disc topology; in these cases, triangulation algorithms can
be employed. However, some holes have convoluted
geometry, like a tangled loop of string (see figure 1). In
our experience, such seemingly extreme cases occur fre-
quently, especially when scanning objects that contain
joints or crevices.

Even if the hole appears simple at a coarse scale, scan-
ner noise may cause the polygons forming its boundary to
point in essentially random directions (see figure 2). Once
again, such extreme cases occur frequently, since scanner
noise increases at the grazing observation angles that often
accompany holes. When scanning marble statues using
laser light, subsurface scattering of the laser beam con-
tributes additional noise [Godin01]. Naive triangulation of
such holes often yields self-intersecting geometry, as
shown in the figure.

Other holes have multiple boundary components that
should be filled, not with discs, but with patches that con-
nect two or more loops of the boundary. This case occurs
most frequently when the data is intermittent, due to low
object reflectance, extreme specularity, grazing observa-
tion angles, or occlusions (see figure 7). A topologically
inflexible approach may fail to find a valid manifold sur-
face that passes through all the data.

To summarize, the ideal hole filling algorithm should:

• produce manifold, non-self-intersecting surfaces,
ev en for noisy or convoluted data,

• choose appropriate (possibly non-disc) topology for
holes that have multiple boundary components,

• construct plausible, visually pleasing geometry,
• distinguish in the output model between observed

and fabricated surfaces,
• use all available information, including the scanner’s

lines of sight, and
• be efficient and scalable, since scanned models can

contain upwards of a billion samples [Levo y00].

We describe a new technique for filling holes in
scanned models by processing a volumetric representation
− a signed distance function whose zero set is the

observed surface. By applying diffusion to this volumetric
representation, we extend the incomplete surface descrip-
tion until it forms a watertight (hole-free) model. In some
cases the result does not match the topology of the object
being scanned, but it is always topologically consistent
(i.e. manifold), cannot self-intersect, and maintains fidelity
to the original data wherever it exists.

2. Related work
Hole filling can be performed as a post-processing

operation, applied after surface reconstruction, or it can be
integrated into a surface reconstruction algorithm. If inte-
grated, we can further distinguish between reconstruction
algorithms that operate on connected meshes of range
samples and algorithms that operate on clouds of unor-
ganized 3D points.

Hole filling as a post-process. For filling holes in an
already reconstructed surface, one widely used approach is
to triangulate each connected component of the surface’s
boundary, thereby filling each hole with a patch that has
the topology of a disc. This technique works well for sim-
ple holes in nearly flat surfaces, but on convoluted holes it
is likely to result in self-intersecting geometry, as men-
tioned earlier. For holes having multiple boundary com-
ponents, many topologies are possible, hence many trian-
gulations, and the problem becomes even more difficult.

Mesh-based reconstruction with hole filling. Mesh-
based methods of surface reconstruction [Turk94, Cur-
less96, Wheeler98] treat each scan (e.g. one sweep of a
laser plane across the surface) as an ordered 2D array of
range (i.e. depth) samples, sometimes called a range
image. These samples can be triangulated to form a poly-
gon mesh. These methods can perform hole filling as a
post-process, or they can integrate it with surface recon-
struction. The only mesh-based method we know of that
integrates hole filling into surface reconstruction is Curless
and Levo y’s VRIP [Curless96]. This method converts
each mesh to a signed distance function whose zero set is
the observed surface, blends these distance functions
together, and extracts the zero set as the final surface. To
fill holes, they mark as empty the region of 3D space that
lies along lines of sight between the scanner and the
meshes, then they extract the boundary of this region as an
additional surface.

This so-called space carving method creates a surface
that bounds the maximum region of space consistent with
the scans, so it is guaranteed to produce a watertight sur-
face. However, the method may lead to surfaces that are
less plausible than smoothly extending the observed sur-
faces. Moreover, the method requires knowledge of

2



(a) (b) (c)

Figure 2: Even holes having a single boundary component may be difficult to fill using triangulation. (a) A rendering of the range image
resulting from one sweep of a laser triangulation scanner across the pupil of David’s right eye. The section shown here is 25 mm wide
on the statue, and the spacing between range samples is 0.29 mm. The heart-shaped pupil forms a ‘‘canyon’’ into which two strips of ge-
ometry extend. However, they do not completely cover its walls and floor, so a hole remains. The boundary of this hole contains 311
edges. (b) A view across the canyon from the left rim. This view corresponds to the frustum shown in (a). Scanner noise makes the
hole ragged and gives its bounding polygons widely varying orientations. (c) Triangulation of such a hole almost invariably produces
self-intersecting geometry; one such intersection is circled.

(a) (b) (c)

Figure 3: Space carving using line-of-sight constraints sometimes produces unwanted geometry. (a) A rendering of a coarse model (2.0
mm) of David’s back and left arm. The model was created using VRIP [Curless96], but with space carving disabled. Despite multiple
scans, a large hole remains in his armpit. (b) If space carving is enabled, some holes are filled, but his armpit is now bridged. The cause
can be seen by examining a slice (c) through the VRIP volume at the plane denoted with a horizontal line in (b). In this visualization, the
signed distance function is shown as a band of white shading off to black, with mid-gray representing the observed surface. Solid black
areas are known to be empty due to line-of-sight constraints. Brown areas have not been seen and are therefore unknown. A large un-
known area bridges David’s torso and arm (circled in the image). The boundary of this area is the bridge surface seen in (b). The alias-
ing in this surface is due to a flaw in the current implementation of space carving; it is not fundamental to the algorithm.

scanner lines of sight, and it performs poorly if these lines
of sight do not adequately cover the volume outside the
object (see figure 3). Additional lines of sight can be
obtained by scanning backdrops placed behind the object
but still within the scanner’s working volume [Curless97],
or by using a separate sensor to detect object silhouettes
[Wojciech00]. However, these solutions may be difficult
to deploy outside the laboratory. Our algorithm can take

advantage of line-of-sight information if it is available, but
it can also operate without it.

Point-cloud reconstruction with hole filling. The
third branch of this taxonomy is point cloud methods
[Amenta98, Bajaj95, Bernardini99, Edelsbrunner92,
Hoppe92, Whitaker98], which treat the union of all the
scans as an unorganized set of 3D points to be fit with a

3



continuous surface. With no connectivity between range
samples, the large gap across a hole is conceptually equiv-
alent to the space between adjacent samples, so these
methods effectively fill holes during reconstruction.

One class of point-cloud methods interpolates the orig-
inal samples using alpha shapes [Edelsbrunner92,
Bajaj95], crusts [Amenta98, Dey01], or balls [Bernar-
dini99]. However, interpolation may not be appropriate
for noisy data, and these algorithms may fail if sample
noise approaches sample density − which it often does.
Also, in algorithms based on alpha shapes or balls, it may
be difficult to find a single alpha (or ball radius) that
bridges holes without also bridging fine surface details.
The authors in [Bernardini99] address the noise problem
by smoothing the data beforehand, and they address the
bridging problem by running the algorithm several times
with increasing ball radius.

A second class of point-cloud methods evolves a sur-
face over time until it approximates the data. Examples
include inflating a polygonal mesh [Chen95] or evolving a
3D signed distance function, a level set of which is the
intended surface [Whitaker98, Zhao01]. A third class of
point-cloud methods fits a set of 3D radial basis functions
to the data; a weighted sum of these functions forms a new
function, a level set of which is the intended surface
[Dinh01, Carr01].

Although the latter two classes resemble our method in
their use of a level set to represent the surface, there are
important differences. First, they fill holes during recon-
struction, so they must be applied to the entire surface,
ev en though holes typically cover only a small fraction of
the total area − perhaps only a few percent. Our diffusion
process, on the other hand, operates only near holes. Sec-
ond, since our algorithm operates after surface reconstruc-
tion is complete, it is compatible with any reconstruction
method. VRIP is one such reconstruction method, which
is known to be fast; the algorithm in [Bernardini99] is also
fast 1. Finally, our algorithm provides a mechanism for
including additional constraints, such as regions of space
known to be empty. Although it might be possible to
extend the former methods to include these additional con-
straints, we know of no such extension.

1 Working from results reported in their papers, we estimate the follow-
ing surface reconstruction (and hole filling) rates, measured in input
range points reconstructed per hour per gigahertz: [Carr01] = 250K,
[Zhao01] = 350K, [Curless96] with space carving = 13M, [Curless96]
without space carving + this paper for hole filling = 5M. Direct compar-
isons between surface reconstruction algorithms are difficult, and recon-
struction quality has not been controlled, so these numbers should only
be taken as approximations.

Other related work. Although diffusion methods
have not previously been applied to surface reconstruction,
they hav e a long history in the image processing commu-
nity. An application of diffusion to filling gaps in sampled
data is image inpainting [Bertalmio00]. Like our method,
Bertalimio et al. iteratively apply a sequence of operators,
one of which is anisotropic diffusion [Perona90], in order
to propagate information from known regions of the image
into unknown (e.g. scratched) regions. Although these
methods have been extended to vector-valued images and
parametric domains on 2-manifolds [Sapiro01], it is not
obvious how to extend them to filling holes in surfaces.

3. Volumetric diffusion
Our hole filling algorithm can be used on any 3D sur-

face model. The surface is first converted to our volumet-
ric representation, which is a regularly spaced 3D grid of
values of a clamped signed distance function ds(x). This
function is defined only in a narrow band near the
observed surface, and it is positive inside the surface and
negative outside. Since the units of the function are not
important, we define it to be in the range from -1 to 1 over
the width of the band. The thickness of the band does not
have a significant influence on the result; we use about 5
voxels on either side of the observed surface. The
observed surface is the zero set of ds

2.

One can construct ds in many ways; our implementa-
tion uses the VRIP algorithm [Curless96] to build this
function directly from a collection of range scans. One
could alternatively build ds using volumetric scan conver-
sion from a reconstructed surface [Frisken00], or one
could identify points known to be outside (or inside) the
object, then use these to build the sidedness function
[Carr01]. At the same time we define an associated
weight function ws, which ranges from 0 to 1 and mea-
sures our confidence in the value of ds. In most areas
ws = 1, but it typically decreases near boundaries of the
observed surface, where noise increases.

The goal of our algorithm is to extend ds to a function
d that is defined over the entire volume, though in practice
we only compute d near the surface − in fact only near
holes in the surface. We achieve this by diffusing the val-
ues of ds outward from the observed surface into adjoin-
ing undefined areas. As the function spreads, so does its
zero set. In particular, the diffused function propagates
inward across the holes, eventually spanning them. Once

2An alternative definition, equivalent in practice, is a filtered sidedness
function: −1 outside the object’s surface and +1 inside.

4



diffusion is complete, the zero set of this function is the
desired hole-free surface.

3.1. Basic algorithm
The diffusion process consists of alternating steps of

blurring and compositing. We begin with d = ds, and each
iteration first convolves d with a lowpass filter h, then
composites ds back into the volume using the over opera-
tor [Porter84]. The algorithm uses two volumes, the diffu-
sion volume and the source volume. The diffusion vol-
ume, which is where the computation takes place, has two
values at each point, di(x) ∈ [−1, 1], the value of d after i
iterations, and vi(x) ∈ {0, 1}, which indicates where the
value of di is valid. The source volume represents the
observed surface, and contains two values, ds(x) ∈ [−1, 1]
and ws(x) ∈ [0, 1]. The initialization is:

(d0, v0) = (ds, [ws > 0]),

where [p] evaluates the predicate p and returns 1 if p is
true and 0 otherwise. A single iteration is:

(d̂i , vi) = h ∗ (di−1, vi−1)

di = wsds + (1 − ws)d̂i .

During the convolution only valid voxels (v = 1) are used;
h is renormalized to include only these voxels. For the
Boolean volume v, convolution with h can be interpreted
as inflating the region where v = 1 by the support of h.
Due to the repeated blurring, the choice of h is not critical;
we use a 3 × 3 × 3 box or 7-point ‘‘plus’’ filter, because
they are faster to evaluate than larger filters. The output
surface is constructed by running Marching Cubes
[Lorensen87] (with corrections from [Montani94]) once,
after diffusion is complete, to extract the d = 0 isosurface.
To insure a closed mesh, voxels outside the volume
boundaries are treated as if they had the value d = +∞.
Note that this surface does not in general interpolate the
original range samples [Curless96]. Figure 4 shows the
stages of diffusion in 2D.

Through a sequence of algebraic manipulations, it is
possible to show that the algorithm we have just described
is identical to the heat equation [Landau87]. In heat diffu-
sion, a scalar field representing temperature is propagated
from each node in a computational domain to its neigh-
bors according to the material’s thermal conductivity.
Optionally, after each diffusion step, a source term is
added into each node, representing the addition (or
removal) of heat to (or from) the system. These propaga-
tion and addition steps correspond precisely to our con-
volution and compositing steps.

The equivalence between our algorithm and the heat
diffusion equation has two important implications. First,
it tells us that our process is guaranteed to converge. Sec-
ond, it says that once the high-frequency components of
the heat distribution have been damped out − which hap-
pens quickly − the equation converges rather slowly to
equilibrium. In the context of our problem, once the holes
are closed and changes in surface shape on each iteration
fall below the noise inherent in our scanner (and hence in
our input geometry), we stop.

3.2. Accelerations
This volumetric diffusion algorithm, implemented

naively, would consume time and memory proportional to
n3, the number of voxels in the volume. Because most of
the volume is empty, and only a small fraction of the sur-
face contains holes, this is inefficient for large models. We
take two measures to accelerate the computation: we use a
sparse representation of the volume that avoids using
memory for undefined areas, and we limit the computation
to voxels that are not more than a certain predetermined
distance from a hole boundary in the original surface.

To implement the first acceleration, we represent both
the source volume and the working volume using a simple
block structure. The volume is divided into fixed-sized
cubical blocks (we use 8 × 8 × 8 voxels), and storage is
only allocated for blocks containing valid voxels. To
implement the second acceleration, we simply flag the
voxels that are within m voxels from a hole boundary 3

and process only those voxels during diffusion. The
choice of m depends on the size of the largest hole to be
filled; m must be greater than half the width of that hole.
Typical values of m for the examples shown in this paper
are 15 to 30 voxels. If the algorithm fails to close a hole
because m was too small, it suffices to increase m and
continue diffusing.

With these two accelerations, the algorithm requires
space proportional to surface area times block width, and
time that depends on m and the area and size of holes. If
we let k be the fraction of the surface area that is within
distance m of a hole boundary, the processing time for a
diffusion iteration is proportional to kn2m. The value of k
reflects both the size and the shape of the holes, but is typ-
ically small (a few percent). For example, given an object
embedded in a 10003 volume, where holes cover 5% of
the surface area and the largest hole is 50 voxels across (in

3A voxel is on a hole boundary if it is valid, has at least one invalid
neighbor (in v0), and has at least one valid neighbor with the opposite
sign (in d0).

5



(a) (b) (c) (d) (e)

Figure 4: Illustration of 2D diffusion in progress. (a) The source term. Grayscale values encode signed distance, with black and white
corresponding to outside (d = −1) and inside (d = 1), respectively. Brown denotes invalid voxels (v = 0). (b) Our diffusion process ex-
tends the surfaces. The red curve marks the zero set. (c) The surfaces begin to interact. (d) The hole closes. (e) The shape is converged.

(a) (b) (c) (d) (e)

Figure 5: The same example as figure 4, but with line-of-sight constraints. Incorporating this additional information into the diffusion
process causes the converged surface to stay mostly out of the region known to be empty, while remaining smooth. (a) Blue pixels mark
where the additional source term indicates that space is empty (wc > 0, visible here only when ws = 0).

(a) (b) (c) (d)

Figure 6: Examples of diffusion in 2D for several kinds of holes. Above: source term; below: diffusion result with zero set marked in
red. (a) A frontal (i.e. perpendicular) scan of a surface with a recessed portion leads to two holes, which our diffusion algorithm fills
with curved steps. (b) If the recessed portion is sufficiently narrow, the diffusion algorithm instead builds a bridge across it. This bridg-
ing can be prevented, when appropriate, using line-of-sight constraints. (c) If two angled surfaces are scanned frontally (relative to each
surface), the joint between them may be missed. Our algorithm fills this hole with a smooth fillet. (d) A flat surface with several holes,
which are filled with the expected geometry.

6



(a) (b) (c)

Figure 7: Results of our algorithm on holes that occur in practice. (a) A section 40mm wide of a fragment of the Forma Urbis Romae, a
marble map of ancient Rome. The surface is relatively flat, but the hole has many islands, which would be thrown away by algorithms
that triangulate its boundary. (b) Another view of the section of David’s hair shown in figure 1. Our diffusion process creates plausible
surfaces to fill these holes. (The bumps in the crevices are drill holes made by Michelangelo; they are not artifacts of our hole filling pro-
cess.) (c) A section 50 mm wide from Michelangelo’s highly polished statue of Night. The statue’s specularity and the grazing scanning
angle in this example created an area that is mostly hole, rather than mostly surface. Our diffusion process successfully fits a surface
through what little data does exist.

its narrowest direction), 2.5 million voxels must be
touched per iteration. This represents only 0.25 percent of
the volume. If the diffusion process is allowed 100 cycles
to converge − twice the width of the largest hole − then the
total number of voxel read/writes is 250 million, still only
a fraction of the 1 billion voxels required if we stored the
entire volume. For more examples, see section 4.

3.3. Line-of-sight constraints
Range scanners provide information about where sur-

faces are not as well as where they are, based on lines of
sight between the range scanner and the observed surface.
In triangulation scanners, each range sample defines two
lines of sight; from the surface to the laser, and from the
surface to the camera. In order to observe a range sample,

both lines must be empty.

We do not require lines of sight in our basic algorithm.
(We do require knowing inside from outside, which we
derive from lines of sight, but this same information could
be derived from surface normals.) When line-of-sight
information is available, it may be incorporated into the
diffusion process as a second source term, (dc, wc). For
volumes of space that are known to be empty, we set
dc = −1, indicating that those areas are outside the surface,
and we set wc = α . At the boundaries between empty and
unseen volumes of space, wc ramps to zero over a length
dependent on the precision of the scanner. The parameter
α can be thought of as our confidence that these voxels are
indeed empty. In practice, it controls how far into the
empty region surfaces will be built; for high α the surface
will turn sharply to avoid empty regions, and for lower
values it will remain smoother at the expense of

7



Figure 8: Volumetric diffusion applied to a larger dataset, the foot of Michelangelo’s David with 1.0 mm spacing. The boundary of the
largest hole in this dataset (between the big and second toes) contains 966 edges. See table 1 for performance statistics.

protruding slightly into the empty region. Typical values
for α range from 0. 001 to 0. 01.

When using line-of-sight constraints in the diffusion,
we still initialize d0 to ds, but during each iteration we
composite with (dc,wc), then (ds, ws). This has the effect
of applying a constant, gentle pressure toward −1 (outside)
as the function diffuses into the known-empty region of
space. An example in 2D is shown in figure 5.

4. Results
To illustrate the behavior of our algorithm, we show

results in figure 6 for several synthetic 2D test cases.
These images show that the algorithm generates plausible,
smooth surfaces for a variety of configurations, and that it
can generate different topologies. Determining whether
the topology it produces matches that of the object being
scanned requires either additional geometry or a high-level
understanding of the object’s shape, which our algorithm
does not have.

To test our method on holes that arise in practice, we
have adapted our algorithm to use the clamped distance
function generated by VRIP for ds, with ws derived from
VRIP’s confidence values. These confidences account for
several sources of uncertainty, most notably surface orien-
tation relative to the scanner’s line of sight and distance to
the nearest edge of the observed surface.

size of input volume 440 M voxels
fraction of voxels touched 4.5%
size of output mesh 4.5 M triangles
total memory allocated 550 MB
processing time including I/O 20 min

Table 1: Some statistics for our hole fill of David’s foot
(figure 8). Processing time is on a 1 GHz Pentium III PC.
The input volume comes from VRIP [Curless96], but the
processing time does not include running VRIP.

Figure 7 shows results for three scanned models from
the Digital Michelangelo Project [Levo y00]. These exam-
ples illustrate the algorithm’s ability to fill a variety of
holes using the same computation. To demonstrate the
scalability of the system, Figure 8 shows results for the
entire foot of the David with 1.0 mm voxel spacing. Per-
formance statistics for this example are given in table 1.
To run our algorithm on the entire David at full resolution
(0.25 mm voxels) would take sev eral days and require tens
of gigabytes of memory. For such a large model, we could
partition the volume into overlapping blocks and process
each block separately. The required amount of overlap
between the blocks would depend on the width of the
largest hole to be filled. We hav e not yet implemented
this.

8



(a)

(b)

(c)

(d) (e)

(f) (g)

Figure 9: Using line-of-sight constraints. (a) Between two of
David’s toes, occlusion causes a hole with ambiguous topology.
(b) Filling the hole results in an inappropriate bridge. (c) The
addition of line-of-sight information forces the correct topology.
(d,e) Slices of the source volume without and with this con-
straint, respectively. (f,g) The same slices of the diffused vol-
ume. Note the bridge that forms in (f) but is avoided in (g). Fur-
ther diffusion will reduce the protrusion in (g) near where the
bridge formed in (f).

(a) (b)

Figure 10: The problem of oblique scans, illustrated in 2D (in
closeup). (a) The surfaces bordering this hole were scanned at
an angle, indicated by the arrows. If VRIP is used to derive the
source term, we obtain angled boundaries between valid and in-
valid voxels, as shown (compare to figure 4a). (b) Diffusion of
this source term causes the zero set (red line) to incorrectly angle
upwards.

The value of line-of-sight constraints is demonstrated
in figure 9. This example shows the first two toes of the
David’s right foot. In this case, the diffusion process
made a topological choice to build a bridge between the
toes. While the bridge is consistent with the shape of this
large hole, it is not the correct topology. By adding line-
of-sight information, we can prevent this bridge from
forming, as shown in the figure. (Note that Figure 8 did
not use space carving; the bridge occurs only for specific
parameter settings, and it did not happen to form in that
particular run.)

One limitation of our present implementation is that,
since our source term comes from VRIP, the scanner’s
lines of sight define the boundary between ws = 0 and
ws > 0. Generally this boundary is approximately perpen-
dicular to the scanned surface, but when all available scans
were taken obliquely it may be angled. Since the zero set
of our diffusion process tends to propagate perpendicu-
larly to the boundary of ws, this can cause undesired kinks
in the reconstructed surface, as shown in figure 10. This
behavior seems independent of the choice of convolution
filter; every isotropic filter we have tried behaves similarly.
The correct solution to this problem is to create a clamped
signed distance function (or a filtered sidedness function)
directly from the reconstructed surface [Frisken00], while
retaining VRIP’s line-of-sight information. We are cur-
rently addressing this problem.

5. Conclusions and future work
We hav e presented a new technique for filling holes in

range scans by using diffusion to complete a volumetric
representation of the surface. The method is simple and
effective, and it always produces a closed, manifold trian-
gle mesh without self-intersections. We hav e

9



demonstrated its feasibility on scanned datasets of signifi-
cant size.

Although our algorithm is robust, it contains a number
of free parameters. The distance at which we clamp our
source terms, the size of our convolution filter h, the dis-
tance m from a hole boundary that we include in our com-
putational domain, and the number of iterations for which
we run our computation, are all parameters that affect our
algorithm’s running time, but have little or no effect on the
shape of the resulting surface. On the other hand, the con-
fidence α that we assign to known-empty voxels signifi-
cantly affects the surface shape. At present, we have no
principled method for deriving values for these parame-
ters.

Diffusion processes and level set methods are very
general computational frameworks [Sethian96, Osher01],
so our algorithm can be extended in several ways. One
extension would be to employ multigrid methods to fur-
ther accelerate our diffusion process. Another would be to
detect when a hole closes, and switch to a smaller compu-
tational domain that tracks the moving surface. Addition-
ally, although we have incorporated into our algorithm one
important form of ancillary information (line-of-sight),
there are other constraints we might wish to add:

• Our algorithm leads to surfaces that generally blend
well with the observed surface. However, greater
control over properties of this surface − for example
curvature or area − might be desirable. This can be
achieved by incorporating terms related to these
properties into the diffusion process [Sethian96,
Whitaker98].

• Although line-of-sight constraints can often resolve
ambiguous topology, there will always be cases that
require high-level knowledge to disambiguate. We
believe this knowledge is best provided through user
intervention. The user could manipulate ds directly
− by sculpting [Perry01], or indirectly − by marking
points in the volume as outside or inside.

Another area in which we believe progress can be
made is in understanding what kinds of holes can arise
during 3D scanning. Ignoring noise and absence of data
due to low reflectance, it is probable that the holes caused
by occlusion of the laser or camera line of sight have inter-
esting geometric properties, and we might be able to make
use of these properties in our hole filling algorithm. For
example, given the geometry of a particular scanner, and
making some assumptions about the coverage with which
a scene was scanned, it might be possible to determine
how far from a hole boundary the diffusion must grow
searching for data to incorporate into the surface that
closes that hole.

6. Acknowledgements
The idea of using volumetric diffusion to fill holes was

first suggested to us by Lucas Pereira. Early discussions
of this idea with Olaf Hall-Holt were invaluable. We
thank Leo Guibas for guiding us through the computa-
tional geometry literature, Ron Fedkiw for helpful discus-
sions about the heat equation, Szymon Rusinkiewicz for
the triangulation algorithm used to generate figure 2, and
all the members of the Digital Michelangelo Project team
for providing the data and motivation for this research.
We also thank our anonymous reviewers for many useful
comments. Our sponsors are Stanford University, the
National Science Foundation. the Mellon Foundation, the
Paul G. Allen Foundation for the Arts, Interval Research
Corporation, Intel, Sony, and MERL.

7. References
[Amenta98] Amenta, N., Bern, M., Kamvysselis, M., ‘‘A

New Voronoi-Based Surface Reconstruction Algo-
rithm,’’ Proc. SIGGRAPH ’98, ACM, 1998.

[Bajaj95] Bajaj, C.L., Bernardini, F., Xu, G., ‘‘Automatic
Reconstruction of Surfaces and Scalar Fields From
3D Scans,’’ Proc. SIGGRAPH ’95, ACM, 1995.

[Bernardini99] Bernardini, F., Mittleman, J., Rushmeier,
H., Silva, C., Taubin, G., ‘‘The Ball-Pivoting Algo-
rithm for Surface Reconstruction,’’ IEEE Transac-
tions on Visualization and Computer Graphics,
October-December, 1999.

[Bertalmio00] Bertalmio, M., Sapiro, G., Caselles, V.,
Ballester, C., ‘‘Image Inpainting,’’ Proc. SIGGRAPH
2000, ACM, 2000.

[Carr01] Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell,
T.J., Fright, W.R., McCallum, B.C., Evans, T.R.,
‘‘Reconstruction and Representation of 3D Objects
with Radial Basis Functions,’’ Proc. SIGGRAPH
2001, ACM, 2001.

[Chen95] Chen, Y., Medioni, G., ‘‘Description of Com-
plex Objects from Multiple Range Images Using an
Inflating Balloon Model,’’ Computer Vision and
Image Understanding, Vol. 61, No. 3, May, 1995.

[Curless96] Curless, B., Levo y, M., ‘‘A Volumetric
Method for Building Complex Models from Range
Images,’’ Proc. SIGGRAPH ’96, ACM, 1996.

[Curless97] Curless, B., New Methods for Surface Recon-
struction from Range Images, PhD dissertation, Com-
puter Science Department, Stanford University, 1997.

[Dey01] Dey, T.K., Giesen, J., Hudson, J., ‘‘Delaunay
Based Shape Reconstruction from Large Data,’’ Proc.
Symposium on Parallel and Large Data Visualization
and Graphics Surfaces and Parallel Rendering" ,
ACM, October, 2001.

10



[Dinh01] Dinh, H., Turk, G., Slabaugh, G., Reconstruct-
ing Surfaces Using Anisotropic Basis Functions Proc.
ICCV 2001.

[Edelsbrunner92] Edelsbrunner, H., M
..

ucke, E.P., ‘‘Three-
Dimensional Alpha Shapes,’’ ACM Transactions on
Graphics, Vol. 13, No. 1, 1994.

[Frisken00] Frisken, S., Perry, R., Rockwood, A., Jones,
T., ‘‘Adaptively Sampled Distance Fields: A General
Representation of Shape for Computer Graphics,’’
Proc. SIGGRAPH 2000, ACM, 2000.

[Godin01] Godin, G., Beraldin, J.-A., Rioux, M., Levo y,
M., Cournoyer, L., Blais, F., ‘‘An Assessment of
Laser Range Measurement of Marble Surfaces,’’
Proc. Fifth Conference on optical 3-D measurement
techniques, Vienna University of Technology, Vienna,
Austria, 2001.

[Hoppe92] Hoppe, H., DeRose, T., Duchamp, T., McDon-
ald, J., Stuetzle, W., ‘‘Surface reconstruction from
unorganized points,’’ Proc. SIGGRAPH ’92, ACM,
1992.

[Landau87] Landau, L.D., Lipshitz, E.M., Fluid Mechan-
ics, 2nd edition, Butterworth Heinemann Oxford,
1987.

[Levo y00] Levo y, M., Pulli, K., Curless, B.,
Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M.,
Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk,
D., ‘‘The Digital Michelangelo Project: 3D scanning
of large statues,’’ Proc. SIGGRAPH 2000, ACM,
2000.

[Lorensen87] Lorensen, W.E., Cline, H.E., ‘‘Marching
Cubes: A High Resolution 3D Surface Construction
Algorithm,’’ Proc. SIGGRAPH ’87, ACM, 1987.

[Montani94] Montani, C., Scateni, R. Scopigno, R., ‘‘A
modified look-up table for implicit disambiguation of
marching cubes,’’ Visual Computer, Vol. 10, No. 6,
1994.

[Osher01] Osher, S., Fedkiw, R., ‘‘Level Set Methods: An
Overview and Some Recent Results,’’ J. Comput.
Phys, Vol. 169, 2001, pp. 463-502.

[Perona90] Perona, P., Malik, J., ‘‘Scale-space and edge
detection using anisotropic diffusion,’’ IEEE PAMI,
Vol. 12, 1990, pp. 629-639.

[Perry01] Perry, R., Frisken, S., ‘‘Kizamu: A System for
Sculpting Digital Characters,’’ Proc. SIGGRAPH
2001, ACM, 2001.

[Porter84] Porter, T., Duff, T., ‘‘Compositing digital
images,’’ Proc. SIGGRAPH ’84, ACM, 1984.

[Sapiro01] Sapiro, G., Geometric partial differential
equations and image analysis, Cambridge University
Press, 2001.

[Sethian96] Sethian, J.A., Level set methods: evolving
interfaces in geometry, fluid mechanics, computer
vision, and materials science" , Cambridge University

Press, 1996.
[Turk94] Turk, G., Levo y, M., ‘‘Zippered Polygon

Meshes from Range Images,’’ Proc. SIGGRAPH ’94,
ACM, 1994.

[Whitaker98] Whitaker, R., ‘‘A Lev el-set Approach to 3D
Reconstruction from range data,’’ International Jour-
nal of Computer Vision, Vol. 29, No. 3, October,
1998.

[Wheeler98] Wheeler, M.D., Sato, Y., Ikeuchi, K., ‘‘Con-
sensus Surfaces for Modeling 3D Objects from Multi-
ple Range Images,’’ Proc. ICCV ’98.

[Wojciech00] Wojciech, W., Buehler, C., Raskar, R.,
Gortler, S.J., McMillan, L., ‘‘Image-Based Visual
Hulls,’’ Proc. SIGGRAPH 2000, ACM, 2000.

[Zhao01] Zhao, H.-K., Osher, S. Fedkiw, R., ‘‘Fast Sur-
face Reconstruction using the Level Set Method,’’
Proc. First IEEE Workshop on Variational and Level
Set Methods, in conjunction with Proc. ICCV ’01,
IEEE, 2001, pp. 194-202.

11


