The Digital Michelangelo Project

 Forma Urbis Romae Project and theMarc Levoy
Computer Science Department Stanford University

Executive summary

Atlas

Awakening

Bearded

Youthful

St. Matthew

David

Forma Urbis Romae

Why scan the statues of Michelangelo?

Motivations

- push 3D scanning technology
- tool for art historians and conservators
- lasting archive

$$
\begin{gathered}
20,000^{2} \\
\approx 1 \text { billion }
\end{gathered}
$$

Technical goals

- scan a big statue
- capture chisel marks $\longrightarrow 5$ meters $\longrightarrow 20,000: 1$

Why capture chisel marks?

Scanner design

laser, range camera, white light, and color camera

Laser triangulation rangefinding

Scanning St. Matthew

working in
the museum

scanning
geometry

scanning color

1 mm

Scanning a large object

- calibrated motions
- pitch (yellow)
- pan (blue)
- horizontal translation (orange)
- uncalibrated motions
- vertical translation
- remounting the scan head
- moving the entire gantry

Our scan of St. Matthew

- 104 scans
- 800 million polygons
- 4,000 color images
- 15 gigabytes
- 1 week of scanning

Post-processing pipeline

- steps

1. aligning the scans
2. combining aligned scans
3. filling holes

artificial surface reflectance

estimated diffuse reflectance

accessibility shading

Visualizing inscribed surfaces

(with application to cuneiform tablets)

- a photograph can only show one side of a tablet at a time
- hard to show tablet edges
- raking illumination favors strokes of one orientation
- need multiple photographs

Our processing pipeline

- UR III dynasty (2100 B.C.)

Our processing pipeline

Our processing pipeline

1. fit a curved surface patch to the curved tablet 2. error in fit \rightarrow relief map

Our processing pipeline

Scanning the David

height of gantry:
weight of gantry:
7.5 meters

800 kilograms

Scanning the David

- 480 individually aimed scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people

The importance of viewpoint

classic 3/4 view

left profile

face-on view

The importance of lighting

lit from above

lit from below

Some uses for these models

- unique views of the statues

A kiosk for viewing 3D models

- PC + graphics card + custom software

- arcade-quality buttons and trackballs
- no touch screen, no menus, no instructions to read

Some uses for these models

- unique views of the statues
- permanent archive

Some uses for these models

- unique views of the statues
- permanent archive
- physical replicas

Replica of Michelangelo's David (20 cm tall)

Some uses for these models

- unique views of the statues
- permanent archive
- physical replicas
- conservation

Cleaning the David

DIAGNOSTIC TESTS AND STATE OF CONSERVATION

GGIUNTI

MRENZE

Digital Michelangelo Project Grand Catalog

The
 Digital Michelangelo Project Archive

Diaital Michelangelo Project Main Page Help file

Statue Name	Atlas	Awakening	Barbuto
Rendering			
README	Atlas README		
Calibration	old.calib	default	old.calib
Raw SD Data	$\frac{\text { atlas-sd-1.tar.qz }(215 \mathrm{MB})}{\text { atlas-sd-2.tar.az }(279 \mathrm{MB})}$ $\frac{\text { atlas-sd-3.tar.az }(184 \mathrm{MB})}{\text { atlas-sd-4.tar.qz }(116 \mathrm{MB})}$	awakening-sd-1.tar. $\mathrm{qz}(248 \mathrm{MB})$ awakening-sd-2.tar. $\mathrm{az}(276 \mathrm{MB})$ awakening-sd-3.tar. $\mathrm{az}(102 \mathrm{MB})$ awakening-sd-4.tar. $\mathrm{Gz}(78.8 \mathrm{MB})$	barbuto-sd-1.tar.gz (224 MB) barbuto-sd-2.tar. qz (222 MB) barbuto-sd-3.tar.qz (132 MB)
Modelmaker Data	atlas-modelmaker-1.tar.qz (261 MB) atlas-modelmaker-2.tar. az (411 MB) atlas-modelmaker-3.tar.qz (294 MB) atlas-modelmaker-4.tar.qz (340 MB) atlas-modelmaker-5.tar.az (177 MB) atlas-modelmaker-6.tar.qz (241 MB)	awakening-modelmaker-1.tar. qz (230 MB) awakaninn_mnialmakor-2 tar n7 (146 MR)	barbuto-modelmaker-1.tar. qz (186 M barbuto-modelmaker-2.tar.az (187 M

Solving the puzzle of the Forma Urbis Romae

Rome, circa 200 AD

Forma Urbis Romae (form of the city of Rome)

- carved 207 A.D.
- 60 wide $x 45$ feet high
- marble, 4 inches thick
- showed the entire city at 1:240
- most important map of ancient Rome that still exists

Fragment \# 010g

Solving the jigsaw puzzle

- 1,186 fragments
- 200 identified
- 600 unidentified
- 400 unincised
- 15% of map remains
- but strongly clustered
- 1 out of 3 fragments remain in the central core of the city
- fitting the remaining pieces together has been an open problem for 500 years

Scanning the fragments

uncrating...

Scanning the fragments

positioning...

Scanning the fragments

scanning...

Scanning the fragments

aligning...

Fragment \#642

3D model

color photograph

Sizes of 3D digital archives

model

Americo Vespuccio, commercial model by De Espona
Trajan's Forum, reconstruction by B. Frischer (UCLA)
Santa Cristina Crypt, Carpignano, laser scan by A. Beraldin (NRC)
Michelangelo's David, laser scan by M. Levoy et al. (Stanford)
1,186 fragments of the FUR

$$
\begin{array}{r}
\text { polygon count } \\
224,000 \\
1,950,000 \\
12,000,000 \\
56,000,000 \\
8,000,000,000
\end{array}
$$

Online archive

- scholar's version (http://rockpile.stanford.edu)
- viewable and downloadable 3D models
- high-resolution color photographs
- requires permission from Stanford and Rome
- public version (http://formaurbis.stanford.edu)
- viewable but not downloadable 3D models
- medium-resolution photographs
- no license required

ScanView remote rendering system [Koller, SIGGRAPH 2004]

low-res client model

high-res server-side rendering

- high-res model stored only on server at Stanford
- client program allows manipulation of low-res model, queries server for rendered image on "mouse up" event
- one server can handle 10 queries per second $=50$ users
- 10,000 downloads of client program in last 24 months

The puzzle as it now stands

Clues for solving the puzzle

- incised lines
- incision characteristics
- marble veining
- fragment thickness
- shapes of fractured surfaces
- rough / smooth bottom surface
- straight sides, indicating slab boundaries
- location and shapes of clamp holes
- the wall: slab layout, clamp holes, stucco
- archaeological evidence

Algorithms for solving the puzzle

- fragment-to-fragment clustering

Fragments fn8 \& 281

Algorithms for solving the puzzle

- fragment-to-fragment clustering
- fragment-to-fragment matching

Boundary incision matching

fragment 156

fragment 134

A match in the Circus Maximus

Known fragments of the Circus Maxium

We expected a "marble lock"

fragment 351

fragment fn9

so we reopened the crates...

...and we found one!

Fracture geometry

2D fracture boundaries

3D fracture surfaces

Red Sequence: L5, L7, L7, L9, L13, R2, . . .
Green Sequence: L1, L3, L8, L8, R3, R3, . . .

Algorithms for solving the puzzle

- fragment-to-fragment clustering
- fragment-to-fragment matching
- fragment-to-wall constraints

Riverfront fragments

Fragment 348 in context

Clamp holes

区

Fragment 421

High Probability Match Med. Probability Match

Low Probability Match

Match Fragment 421 with 475!

Wall Feature Matching: example results for fr. 421+475

High Probability Match Med. Probability Match

Low Probability Match

The Aventine Hill

The nature of computer-generated matches

- high probability
- Fragments 28a, 34b, fn23 (Via Campana-Portuensis, Naumachia Augusti)
- Fragments 156, 667
- Fragments fn9, 351 (Circus Maximus)
- Fragments 28a, 150 (Via Campana-Portuensis)
- Fragments 92, 138 (Transtiberim)
- Fragments 330, 354 (Transtiberim?)
- Fragments 37Ail, 576 (Transtiberim)
- medium probability

Fragment 421.txt
clampholes a4-2:0, a4-15:1 - no, clampholes on bottom clampholes a4-5:0, a4-3:1 - maybe
clampholes b4-1:0, b3-18:1 - no, occupied by fragment 10 clampholes b4-2:0, b4-3:1-no, clampholes on bottom clampholes c2-11:0, c2-9:1-no, no tasselli on bottom clampholes c3-17:0, c3-16:1 -no, between 2 slabs clampholes c4-27:0, c4-18:1 - no, between 2 slabs clampholes a7-13:0, a7-12:1 - maybe?
clampholes a8-11:0, a8-8:1 - no, tassello on bottom clampholes a8-13:0, a8-11:1 - no, tassello on bottom clampholes a8-16:0, a8-12:1 - no, many problems! clampholes a9-6:0, a9-5:1 - maybe? clampholes a10-1:0, a9-15:1 - maybe? clampholes b6-2:0, b6-1:1 - no, occupied! clampholes b10-1:0, b9-2:1 - maybe?
clampholes b10-2:0, b10-3:1-no, clampholes on bottom clampholes c9-23:0, c9-25:1 - no, between 2 slabs
frags/102.txt frags/103.txt frags/104.txt frags/105.txt frags/106.txt frags/107.txt frags/108ab.txt frags/109.txt frags/10Aa.txt frags/10Ab.txt frags/10aa.txt $\begin{array}{lc}\text { frags/10ab.txt } & \text { Maxxcore }=4.4,1,50 \\ \text { fragss/10a.txt } & \text { MaxScore }=6: 3,9,45 \\ \text { frags/10abcdeAaAb.txt MaxScore }=8.5: 6,7,40\end{array}$ frags/10fgh.txt frags/10ilmpq frags/10n.txt
frags/10noaa.txt frags/10noaa.t.t.
frags/10o.txt frags/10p.txt frags/10q.txt frags/10r.txt frags/10s.txt frags/10tuv.txt

MaxScore=5.5: 4,2,45 MaxScore $=2: 5,6,50$ MaxScore=1: 2,0,5 MaxScore=-99999: 2,0,5 MaxScore $=3: 4,0,50$ MaxScore=-99999: 4,0,50 MaxScore=5: 3,17,40 MaxScore=-99999: 3, 17,40 MaxScore $=6.5$: 3, 10,50 MaxScore=4: 4,1,50 txt MaxScore=8.5: 6,7,40 MaxScore=8.5: $0,17,30$ MaxScore=8: 7,72,35 MaxScore=3: 3,8,40 MaxScore $=6.5: 4,15,50$ MaxScore $=6.5: 4,15,50$
MaxScore $=6.5: 3,25,45$ MaxScore=5.5: $1,27,15$
MaxScore $=5$: 3,9,50
MaxScore $=3: 3,2,40$
MaxScore $=3: 3,2,40$
MaxScore $=4: 5,5,50$
MaxScore $=4: 5,5,50$
MaxScore $=6.5: 3,12,35$

Algorithms for solving the puzzle

- fragment-to-fragment clustering
- fragment-to-fragment matching
- fragment-to-wall constraints
- fragment-to-city matching

Ludus Magnus a gladiator training stadium

HTIPCMIT


```
forma urbis romae
```


In closing...

- strawman conclusions
- 3D scanning will become faster and cheaper, but it will never become routine

Some statues may be "unscannable" (using optical methods)

Laocoon

In closing...

- strawman conclusions
- 3D scanning will become faster and cheaper, but it will never become routine
- automating geometric matching is easy, but automating high-level reasoning is hard » Human archaeologists are still needed!
- questions for the future
- What is the proper role for 3D scanning?

Creating digital libraries of 3D content

- 3D archives are large
- metadata - data about data
- secure viewers for 3D models
- robust 3D digital watermarking
- viewing, measuring, extracting data
- indexing and searching 3D content
- insuring longevity for the archive

In closing...

- strawman conclusions
- 3D scanning will become faster and cheaper, but it will never become routine
- automating geometric matching is easy, but automating high-level reasoning is hard
» Human archaeologists are still needed!
- questions for the future
- What is the proper role for 3D scanning?
- visualization versus analysis
- Can 3D scanning aid field archaeology?

The team in Italy

(May/June, 1999)

- Faculty
- Prof. Marc Levoy
- Sovr. Communale
- Prof. Eugenio La Rocca
- Dott.ssa Laura Ferrea
- Dott.ssa Susanna Le Pera
- Dott.ssa Anna Somella
- Sponsors
- Interval Research
- Paul G. Allen Foundation for the Arts
- Stanford University
- Sovraintendenza Communale
- Mellon Foundation
- Pierluigi Zappacosta
- Staff
- Dr. Kari Pulli
- Computer Science students
- Sean Anderson
- Dave Koller
- Lucas Pereira
- Szymon Rusinkiewicz
- Additional software development
- Matt Ginzton
- James Davis
- Prof. Brian Curless (UW)

The team at Stanford
 (2001-2004)

- Faculty
- Prof. Marc Levoy
- Prof. Jennifer Trimble
- Classics students
- Margaret Butler
- Elizabeth Clevenger
- Jacob Denmark
- John Mandsager
- Andrew Martin
- Marden Nichols
- Matthew Shulman
- Lilla Toal

Sponsors

- National Science Foundation
- Stanford University
- United Parcel Service
- Staff
- Dr. Tina Najbjerg
- Dr. Steve Marschner
- Computer Science students
- Sha Sha Chu
- Natasha Gelfand
- Leslie Ikemoto
- David Koller
- Tricia Lee
- Francois-Marie Lefevere
- Austen McDonald
- Rene Patnode
- Nicolas Scapel
- Additional collaborators
- Dott.ssa Claudia Cecamore

http://graphics.stanford.edu/projects/mich/
http://graphics.stanford.edu/projects/forma-urbis

