The Digital Michelangelo Project

Marc Levoy

Computer Science Department Stanford University

Executive overview

Create a 3D computer archive of the principal statues and architecture of Michelangelo

Scholarly motivations

- pushes technology
- scientific tool
- cultural experiment
- lasting archive

Commercial motivations

- virtual museums
- art reproduction
- 3D stock photography
- 2nd generation multimedia

Outline of talk

- hardware and software
- scanning the David
- acquiring a big light field
- implications of 3D scanning
- lessons learned from the project
- the problem of the Forma Urbis Romae

Laser triangulation scanner customized for large statues

4 motorized axes

truss extensions for tall statues

white light, and color camera

Scanning St. Matthew

working in the museum

scanning geometry

scanning color

Our scan of St. Matthew

- 104 scans
- 800 million polygons
- 4,000 color images
- 15 gigabytes
- 1 week of scanning

Post-processing pipeline

• range data

- align scans from different gantry positions
- combine using a volumetric algorithm
- fill holes using space carving

• color data

- compensate for ambient lighting
- discard shadows or reflections
- factor out surface orientation

Scanning the David

maximum height of gantry: 7.5 meters weight including subbase: 800 kilograms

Statistics about the scan

- 480 individually aimed scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 1,080 man-hours
- 22 people

Head of Michelangelo's David

David's hairline and right eye

- 1mm model
- 500,000 polygons

Model of Galleria dell'Accademia

Computer representations of architectural objects

- unstructured mesh
- line drawings
- structured 3D model

Light field rendering

- a form of image-based rendering (IBR)
- make new views by rebinning old views
- Advantages

- doesn't need a 3D model
- less computation than rendering a model
- rendering cost independent of scene complexity
- Disadvantages
 - fixed lighting
 - static scene geometry
 - must stay outside convex hull of object

Acquiring a light field of Michelangelo's statue of Night

the light field consists of 7 slabs, each 70cm x 70cm

Implications of 3D scanning on the viewing of art

- type of reproduction
 - scripted computer graphics
 - interactive computer graphics
 - physical copy
- pros and cons
 - + flexible viewing
 - + increased accessibility
 - increased ubiquity
 - separation from context

Flexible viewpoint

Flexible lighting

lit from above

lit from below

Implications of 3D scanning for art historians

- restoration record
- permanent archive
- diagnostic maps
- geometric calculations
- projection of images onto statues

Diagnostic imaging of David

Implications of 3D scanning for educators and museums

- virtual exhibitions
- augmented exhibitions
- enhanced documentaries
- interactive multimedia
- physical replicas

Letting the tourists play with our model of Dawn

Letting the tourists play with our model of Dawn

<section-header><image><image>

What really happened?

- Kids immediately crowd around. Some adults step right up; others need invitations.
- Kids but don't take turns very well. Some adults don't either.
- A woman will try it only if a man is not nearby. Same for girls and boys.
- Adults usually rotate the statue slowly. Kids fly around wildly, but are surprisingly good at it.

What really happened?

- It's amazing how much trouble people can get into. Zooming too close is the worst offender.
- People enjoy changing the lighting as much as they do rotating the statue.
- People are fascinated by the raw 3D points, which they see when the model is in motion.
- People spend a lot of time looking back and forth between the screen and the real statue.

Lessons learned

• hardware and software

- variable standoff distance
- tracking of gantry, not manual alignment of scans
- autocalibration, not stiff gantry
- automatic view planning
- logistics
 - scan color quickly things change
 - need a large team scanning is tedious work
 - post-processing takes time and people
 - 50% of time on first 90%, 50% on next 9%, ignore last 1%

Il Plastico: a model of ancient Rome

- made in the 1930's
- measures 60 feet on a side
- at the Museum of Roman Civilization

The Forma Urbis Romae: a map of ancient Rome

- carved circa 200 A.D.
- 60 wide x 45 feet high
- marble, 4 inches thick
- showed the entire city at 1:240
- single most important document about ancient Roman topography

Solving the jigsaw puzzle

• 1,163 fragments

- 200 identified
- 500 unidentified
- 400 unincised
- 15% of map remains – but strongly clustered
- available clues
 - fragment shape (2D or 3D)
 - incised patterns
 - marble veining
 - matches to ruins

<section-header><image><section-header>

Scanning the fragments

Acknowledgements			
Faculty and staff		In Florence	
Prof. Brian Curless	John Gerth	Dott.ssa Cristina Acidini	Dott.ssa Franca Falletti
Jelena Jovanovic	Prof. Marc Levoy	Dott.ssa Licia Bertani	Alessandra Marino
Lisa Pacelle Dr. Kari Pulli	Domi Pitturo	Matti Auvinen	
		In Rome	
Graduate students		Prof. Eugenio La Rocca	Dott.ssa Susanna Le Pera
Sean Anderson	Barbara Caputo	Dott.ssa Anna Somella	Dott.ssa Laura Ferrea
James Davis	Dave Koller		
Lucas Pereira	Szymon Rusinkiewicz	I. Dire	
Jonathan Shade	Marco Tarini	In Pisa	
Daniel Wood		Roberto Scopigno	
Undergraduates		Sponsors	
Alana Chan	Kathryn Chinn	Interval Research	Paul G. Allen Foundation for the Ar
Jeremy Ginsberg	Matt Ginzton	Stanford University	
Unnur Gretarsdottir	Rahul Gupta		
Wallace Huang	Dana Katter	Equipment donors	
Ephraim Luft	Dan Perkel	Cyberware	Cvra Technologies
Semira Rahemtulla	Alex Roetter	Faro Technologies	Intel
Joshua David Schroeder	Maisie Tsui	Silicon Graphics	Sony
David Weekly		3D Scanners	

1000 Mara I

