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Abstract—We develop a novel approach to generate human
body models in a variety of shapes and poses via tuning seman-
tic parameters. Our approach is investigated with datasets of up
to 3000 scanned body models which have been placed in point
to point correspondence. Correspondence is established by non-
rigid deformation of a template mesh. The large dataset allows
a local model to be learned robustly, in which individual parts
of the human body can be accurately reshaped according to
semantic parameters. We evaluate performance on two datasets
and find that our model outperforms existing methods.
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I. INTRODUCTION

Human shape modeling plays an important role in many

applications ranging from digital entertainment and garment

manufacturing, to simulation and training. However, creating

human shape models remains a tedious and labor intensive

task. There are difficulties in acquisition, merging, and

editing of human shapes.

One approach to editing body meshes is to learn a model

of how the mesh deforms with respect to shape and pose.

With this model, new body shapes can be generated. How-

ever, previous reshaping methods either lack semantically

meaningful parameters, or lead to unexpected results from

over-fitting. For example, when we adjust the chest cir-

cumference, the waist circumference may have undesirable

change. To address this problem, in this paper we present

SPRING, a novel Semantic Parametric ReshapING method.

More specifically, we start by bringing a large data set

of body scans into correspondence. We develop a non-rigid

registration algorithm with regularization, to register the raw

range scans in the dataset with a template mesh. As a

result, our database consists of the the warped templates

corresponding to the raw scans, and has the critical point-

to-point correspondences that are required to learn the body

shape constraints and variations.

Several mathematical models [2], [8], [12], [14], [16] have

been proposed to model human pose and shape variation. We

use a model in which pose and shape variations are learned

as separate terms of a unified model. After the transfor-

mations of shape variation across different individuals are

obtained, Principal Component Analysis (PCA) is used to

generate a subspace of body shape deformations [20] and

[9]. This portion of our analysis is similar to prior work and

we refer to these methods as Global Mapping.

We extend the method with a novel regression model,

which we refer to as Local Mapping, to explore the space

of detailed semantic attributes. For each triangular face, a

linear mapping between semantic attribute parameters and

the corresponding shape variations is learned, and a mapping

constraint is introduced to avoid the over-fitting problem.

The primary contribution of this paper is a novel method

to reshape models of the human body using semantic pa-

rameters. We support this contribution with experiments to

verify the validity of our model and to compare the results of

our reshaping method with the state-of-art reshaping method.

Results show that our reshaping method compares well in

terms of accuracy and robustness.

II. RELATED WORK

Correspondences: To obtain a dataset of human bodies,

laser range scans of different individuals need to be col-

lected. After that, a method to establish point-to-point cor-

respondences between them is needed. A common method

is to use a template mesh to fit all the target shapes. It

was first applied to heads and faces. For example in the

work of Marschner et al. [10], an energy-minimization

framework is introduced to guide the fitting process by

using a surface smoothness term. Allen et al. [1] introduced

this framework into the domain of whole body models

and made improvements to address hole-filling and detail

from the template surface. Sumner and Popović [17] used

a similar method in their work of deformation transfer. A

deformation identity term is added into the energy function

to prevent drastic change caused by the smoothness term. All

of these methods minimize this function in two stages and

the process is can be thought of as a non-rigid deformation

of the template mesh onto each target model. We follow a

similar strategy.

Morphable Model: Several mathematical models [2], [8],

[12], [14], [16] have been proposed to model human pose

and shape variation. SCAPE [3] learns separate models of

body deformation across poses and individuals. One model

is accounting for changes in pose and another is accounting
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Figure 1. An overview of our pipeline to build a large scale dataset and reshape models of the human body. First, we fit a template mesh (a), to each raw
range scan (b) using a non-rigid registration method. After this, our body shape dataset (d) has point-to-point correspondences with our separately obtained
pose dataset (c). Finally, we propose a novel reshaping method to generate new models of human body according to semantic parameters of human body
shape and pose (e).

for differences in body shape. However this method has

an inherent problem that pose and shape are treated inde-

pendently. Allen [2] uses maximum posteriori estimation of

identity and pose-dependent body shape variation. However

since dimensionality of the nonlinear function is so high,

the optimization procedure is expensive. Hasler et al. [8]

propose a statistical model which jointly encodes pose and

body shape. The primary advantage of this approach is

correlations between body and shape are encoded. Chen et
al. [5] present another approach which explores a tensor

decomposition technique. To preserve the dependency be-

tween pose and shape parameters, a joint function is used

to model the deformation, and then a tensor-based method

is introduced which has two parts—one is for individual

body segment and the other is for the whole body. Unlike

these work, Neumann et al. [12] propose a semi-parametric

learning approach to build a data-driven model which can

produce non-linear muscle deformation effects. Based on

their work, many applications have been developed, such

as shape and pose estimation [7] [4] [19] and deformable

cloth models [6].

Semantic Modeling: To explore body shape variation

across different individuals, Allen et al. [1] perform PCA

over the displacements of the template points. Seo and Thal-

mann [15] also use PCA over point displacements to repre-

sent the non-rigid component of body deformation. However

point displacement is not robust when two individuals vary

greatly in scale. To address this problem, following the work

by Sumner and Popović [17], Anguelov [3] performed PCA

over the transformation matrices between the template shape

and the other models. By representing the deformation of

each triangle using a 3×3 matrix, scaling of the deformation

can be maintained.

Although PCA can be utilized to characterize the space

of human shape variation, it does not provide a direct

and intuitive way to explore the space of the semantic

parameters, such as height and weight. Allen [1] introduces

a linear regression method to learn a linear mapping between

7 semantic parameters and the PCA coefficients. Zhou [20]

and Jain [9] follow a similar method. But 7 semantic

parameters are not adequate to reconstruct a human model in

most cases. So we define a new set of semantic parameters,

which can be used to reshape human body models in detail.

Unfortunately, when the methods proposed in these papers

are used on our detailed semantic parameters, overfitting

occurs and correct independent variation of parameters is not

possible. To avoid this problem, we propose a novel method

to explore the space of detailed semantic parameters.

Localized Deformation: Localized deformation is a pop-

ular research topic in recent years. Meyer et al. [11] apply

the Key Point Subspace Acceleration (KPSA) technique to

character animation. With a few of the basis vectors after

the Varimax rotation, the motions are much more localized.

Neumann et al. [13] propose another method by extending

the theory of sparse matrix decompositions to extract sparse

and spatially localized deformation modes from an animated
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mesh sequence. Though this model can produce spatially lo-

calized and semantically meaningful effects by exaggerating

certain components, it is not suitable for our work that the

reconstructed human model should confirm to the precise

semantic parameters, not just a trend.

III. BUILDING A LARGE SCALE DATASET OF HUMAN

BODY

Before a model of human shape and pose can be learned,

a training dataset needs to be produced. We obtain body

meshes from existing datasets, establish correspondence, and

fill holes.

A. Source datasets

We make use of several existing datasets. MPI distributes

body data which includes both variations in shape and

pose [8]. This data is already in correspondence, however

the dataset is neither large nor high resolution. We use this

as our small dataset.

In order to build a large dataset we combine two existing

sources. Our source meshes for body shape are laser range

scans from the CAESAR dataset, which includes thousands

of models. Each range scan in the CAESAR dataset has

about 150, 000−200, 000 vertices and 73 markers. Unfortu-

nately this data is not in correspondence and contains many

holes.

Our source for body pose data is the SCAPE method

by Anguelov [3]. Although the original work made use of

both shape and pose data, only the pose data is distributed,

together with a template model and correspondences. We

use this data which consists of 70 poses, each with 12, 500
vertices and 25, 000 facets.

We assemble our large dataset by bringing the template

provided with SCAPE into correspondence with the body

shape data provided by CAESAR.

A range scan from the CAESAR dataset is shown in

Figure 2(a). The template provided by SCAPE is shown in

Figure 2(b) , with colors showing segmentation into 16 rigid

parts.

B. Establishing Point-to-point Correspondences

To obtain meshes with point-to-point correspondences, a

method inspired by Allen et al. [1] and Sumner et al. [17]

has been taken. A template mesh is used to fit to each

raw scan. To compute the deformed vertices, a set of affine

transformations are defined to minimize a energy function

which consists of four parts: ES , EI , EC and EM . The first

two terms regularize, and the second two terms enforce a

proper fitting to the target scan. For details, please refer to

[1] [17]. An iterative approach [1] similar to ICP is used

to minimize this energy function. Since this method warps

the template onto each raw scan, meshes in our dataset have

point-to-point correspondences with the template and each

other, while their shapes are very close to the corresponding

(a) (b)

Figure 2. A raw range scan from the CAESAR dataset (a), and our
template obtained from SCAPE (b).

raw scans. Figure 3 shows examples of some meshes in our

dataset.

C. Hole Filling and Hand Replacement
Since the range scans, D, from our dataset have holes in

some parts, such as under the arms and on top of the head,

the method above needs to be modified. If the closet point on

D to a deformed template point is located on the boundary

of the holes, we set the weight corresponding to EC to 0.

The deformation of these points are affected mainly by the

smoothness term. As is shown in Figure 4, the holes are

filled smoothly.

(a) (b)

Figure 4. Raw scanned meshes contain many holes as shown in (a). Using
our template, these holes can be filled as shown in (b).

Our template is different from the raw scans in hand pose,

one is fisted and the other is stretched. Thus fitting in this

region of D would be impossible. To address this problem,

we identify the points belonging to the hand by labeling

them on the template mesh and ignore the closet points

on D in this region. That is to say, we favor the template

surface over the scanned surface when fitting this part and

these points are also affected mainly by the smoothness term.

Figure 5 shows the result that the junction looks quite good

without any distortion.
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Figure 3. By fitting a template to many raw range scans, meshes with a wide variety of body shapes having point-to-point correspondences can be
obtained.

(a) (b)

Figure 5. The template hand is used to replace the scanned hand. The raw
scanned hand is in an extended pose as shown in (a). The template hand
can be fit to M without any distortion, as shown in (b).

IV. SEMANTIC PARAMETRIC RESHAPING

Since point-to-point correspondences between all body

shapes has been established, we can learn a human shape

model incorporating all scans. We begin with the SCAPE

model to learn the pose and shape deformation. After the

transformation matrices of shape variation across different

individuals are obtained, we introduce a regression model

to explore the space of detailed semantic parameters.

A. Transformation Matrices of Shape Variation
To model the shape variation, we firstly separate the pose

deformation by solving for a 3 × 3 transformation matrix

Qk for each triangle k in each mesh. After this, shape

deformation matrix Sk can be obtained. For each mesh i, a

9×N (N is the number of triangles) vector S̃i is regrouped

from the shape deformation Si. And then a linear subspace

which generates the vector can be estimated by PCA.

S̃i = ϕU,μ(β
i) = Uβi + μ (1)

where Uβi+μ is a reconstruction of the matrix coefficients

from the PCA. For more details, please refer to [3].

B. Detailed Semantic Parametric Modeling

PCA coefficients can be used to characterize the space of

human shape variation, but they do not have actual meaning

as to anthropometry. To address this problem, we use a

linear regression method to learn a linear mapping between

semantic parameters and the model parameters.

1 forearm length 11 12 chest circumference
2 upper arm length 13 14 waist circumference
3 head height 15 16 hip circumference
4 neck height 17 thigh circumference
5 thigh length 18 knee circumference
6 calf length 19 calf circumference
7 foot length 20 ankle circumference
8 head circumference 21 check circumference
9 upper arm circumference 22 shoulder breadth
10 forearm circumference 23 upper body height

Table I
SEMANTIC PARAMETERS

In our experiments, we use 23 semantic parameters as

enumerated in Table I, e.g., forearm length, neck height,

head circumference and shoulder breadth. For chest, waist

and hip circumference, two parameters are defined respec-

tively: one is for breadth and the other for thickness, as

shown in Figure 6.

One option is to learn the mapping between semantic

parameters and PCA coefficients, a method we refer to as

Global Mapping. This is similar to the method introduced

by Allen [1]. Assuming we have L semantic parameters

and the dimension of PCA space is k, the mapping can be

represented as:

M [f1 . . . fL 1]T = p (2)

where M is a k × (L + 1) matrix, fl ( l is the index

of semantic parameter) are the semantic parameter values
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Figure 6. Two examples of semantic parameters, breadth and thickness
of chest circumference.

of an individual, and p are the corresponding PCA coeffi-

cients. This mapping enables us to specify every semantic

parameter offset. Let Δf = [Δf1 . . . ΔfL 0]T denotes

an parameter offset vector, PCA parameters offset can be

represented as Δp = MΔf .

We found that the above model has difficulty with over-

fitting especially when a smaller dataset is used. Since PCA

coefficients do not have actual meaning as to anthropometry,

we must treat all semantic parameters equally for each

PCA coefficient. Consequently, the topology of human body

is ignored. To address this problem we introduce Local
Mapping, a method taking advantage of the constraints of

topology of human body.

Local Mapping is a linear regression model which di-

rectly learns a mapping between semantic parameters and

shape deformation matrices. Each shape deformation matrix

S corresponds to a triangular face belonging to a certain

rigid part. The template model has been segmented into 16
rigid parts beforehand and we just need to bind the semantic

parameters to each parts. For example, forearm length and

circumference belong to the forearm part.

For each triangular face, a 9× (L+ 1) matrix N can be

computed based on the following equation:

N Φ( [f1 . . . fL 1]T , i) = si (3)

where Φ is a function defining which parameters influence

this face, i is the index of the face and si is a 9× 1 vector

regrouped from the 3× 3 shape deformation matrix Si.

The function of Φ is to decide which semantic parameters

influence the triangular face. So we refine it as a vector dot

producting the sematic parameters. And equation 3 can be

rewritten as:

N ([φi,1 . . . φi,L 1]T .× [f1 . . . fL 1]T ) = si (4)

To compute φi,l, we found that the following criteria

which uses geodesic distance performed well. The nearest

vertex Cj ( j is the index of rigid part ) to the mass of each

rigid part Pj need to be found firstly. For each triangular

face, we choose the nearest vertex to the mass of the face

as starting point Vi. And then geodesic distance Di,j from

Vi to Cj is computed, just as shown in Figure 7. We use

the distance Di,j to decide if rigid part Pj influence this

face. If the distance is below a threshold ε, the semantic

parameters belonging to this part are considered important

by setting corresponding φi,l to 1 and otherwise to 0. The

criteria intuitively conform to physiology that the adjacent

parts of a human body have a certain relationship. These

φi,l are only evaluated once on the template mesh.

Figure 7. Geodesic distance. Taking a triangular face at shoulder as an
example: Vi is the nearest vertex to the mass of the face and Cj is the
nearest vertex to the mass of the forearm part Pj . The black line is the
geodesic from Vi to Cj .

In this case, results are improved considerably but some

problems still exist when the model is learned from the small

dataset (e.g., when we modify the value of head height, the

head circumference of the generated mesh is also changed

). When the mapping is learned on the large dataset, results

are quite satisfactory, as shown in Figure 8 and Figure 9.

Figure 8. The first one is our template while the others are results generated
by increasing the thickness of chest circumference, waist circumference and
hip circumference in turn.

V. EXPERIMENTS

In order to evaluate our semantic model, we learned a

linear mapping between semantic parameters and body shape

deformation S based on both previous and our large datasets.
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Figure 9. Results generated by increasing thigh length, calf length, thigh
circumference and calf circumference in turn.

The previous dataset has 114 meshes, while our large dataset

has more than 3000. Three sets of comparison are made

between existing Global Mapping methods [1], and Local
Mapping introduced in this paper.

(a)

(b)

Figure 10. Results comparison: head height is increased. (a) result of
global mapping using previous dataset; (b) result of local mapping based
on our large dataset.

1) When head height is increased, results generated by

different methods on different datasets are compared. As

shown in Figure 10, the left one is template and the right is

the generated result in each subimage. We observe that

i. Not only the head height, head circumference is

increased when using Global Mapping with the

previous dataset.

ii. Result is great that only the head height is in-

creased when using Local Mapping based on our

large dataset.

2) We increase thigh and calf circumference and results

generated by different methods on different datasets are

compared. As is shown in Figure 11, the left column

(a) (b)

(c) (d)

Figure 11. Results comparison: thigh and calf circumference are increased.
(a) (b) results of global mapping based on previous dataset; (c) (d) results
of local mapping based on the large dataset.

corresponds to increase of thigh circumference and the right

to increase of calf circumference. We conclude that

i. Thigh and calf have very little change when using

Global Mapping based on the previous dataset.

The global model is not sufficient to allow these

changes.

ii. Local Mapping based on our large dataset is per-

fect to modify the local shape of the calf and thigh.

3) Our method has shown its advantage over the state-of-

art one. But we still want to know if the size of the dataset

influence the result of our method. Thus we compare the

results of Local Mapping based on the previous and our large

datasets in Figure 12. As chest circumference is increased,

the height of whole body is changed if the mapping is

learned from the small dataset while the results based on

the large dataset has no change of body height. We conclude

that although Local Mapping has more power to represent

semantic changes, it still requires a large dataset to perform

optimally.

4) Though results of Global Mapping and Local Mapping

learned from our large dataset are visually similar in some

cases, changing parameters of some parts will still affect

nonadjacent parts in the results of Global Mapping , e.g.,

when we adjust the thigh circumference, the chest part
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TC CC FL UAL CC1 CC2 WC1 WC2
Average Offset of Global Mapping(cm) 0.70 5.04 -0.39 -0.10 0.65 0.46 -0.12 -0.10
Average Offset of Local Mapping(cm) 0.04 5.02 0 0 0 0 0 0.01

Table II
DETAILED SEMANTIC PARAMETER ANALYSIS. TC: THIGH CIRCUMFERENCE; CC: CALF CIRCUMFERENCE; FL: FOREARM LENGTH; UAL: UPPER ARM

LENGTH; CC1: BREADTH OF CHEST CIRCUMFERENCE; CC2: THICKNESS OF CHEST CIRCUMFERENCE; WC1: BREADTH OF WAIST CIRCUMFERENCE;
WC2: THICKNESS OF WAIST CIRCUMFERENCE. NOTE THAT CHANGES IN ONE SEMANTIC PARAMETER OVERFLOW INTO OTHER PARAMETERS WHEN

GLOBAL MAPPING IS USED. THE LOCAL MAPPING INTRODUCED IN THIS PAPER GREATLY REDUCES THIS EFFECT.

(a)

(b)

Figure 12. Results comparison: chest circumference is increased. The
results of local mapping using the previous (a) and our large (b) datasets
are shown. In each subimage, the template (left), results of adjustment of
chest circumference breadth (middle) and thickness (right) are shown.

also changes. We made a quantitative comparison between

Local Mapping and Global Mapping methods to show these

differences. We increase the calf circumference by 5cm and

generate the corresponding mesh using Global Mapping and

Local Mapping. Then we measure the semantic parameters

of the generated mesh. Table II shows the results. The

Local Mapping method has less influence on nonadjacent

parts than Global Mapping when we adjust this parameter.

This matches the results previously shown visually and we

observe similar quantitative results with other parts. This im-

plies that the proposed Local Mapping method outperforms

the Global Mapping method in terms of accuracy and ability

to change semantic parameters individually.

VI. CONCLUSION

In this paper, we introduce Semantic Parametric Reshap-

ing (SPRING), a linear regression model to explore the

space of detailed semantic parameters. We compare the

results of our local regression method with the state-of-

art global method, and conclude our local modeling better

preserves independence among parameters, especially for

smaller datasets.

One avenue of future work is to consider how a large

dataset might influence other portions of the modeling

pipeline. For example, in our regression model, the semantic

parameters influencing each rigid part are defined manually.

However, given a dataset of 3,000+ body meshes, an auto-

mated method may be possible to determine which semantic

parameters should be included for each rigid part.

Semantic models such as the one presented here, allow

applications that are difficult using global PCA based mod-

els. For example, consider virtual garment fitting, modeling

and design [18]. If a consumer provides measured body

parameters, a semantic model allows an approximate body

mesh to be generated for use by tailors and customization

design tools.
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