
A CAMERA-BASED POINTING INTERFACE FOR MOBILE DEVICES

Orazio Gallo, Sonia M. Arteaga, and James E. Davis

School of Engineering, University of California, Santa Cruz.

ABSTRACT

As the applications delivered by cellular phones are
becoming increasingly sophisticated, the importance of
choosing an input strategy is also growing. Touch-screens
can simplify navigation by far but the vast majority of
phones on the market are not equipped with them. Cameras,
on the other hand, are widespread even amongst low-end
phones: in this paper we propose a vision-based pointing
system that allows the user to control the pointer's position
by just waving a hand, with no need for additional hardware.

Index Terms — Machine vision, mobile devices,
pointing systems, computer interfaces, tracking.

1. INTRODUCTION

After over two decades virtually dominated by the use of
mice and keyboards, the last few years have been
characterized by the rise of alternative input devices,
generally designed for improved ergonomics. In particular,
the crucial ability to control a pointer on the screen has
driven the study and development of a large number of
devices such as pen-tablets, touch-pads, touch-screens, and
TrackPoints. Developing a sensible pointing strategy is
especially important for hand-held devices, such as
cellphones. The very nature of these devices, in fact,
requires that both access and manipulation of information be
as quick and efficient as possible.

High-end phones frequently utilize touch-screens as a
strategy to solving this problem. Touch-based technology
provides a very intuitive interface for navigation but does
suffer from limitations: for non stylus-based touch-screens,
the user's finger size can bound the pointing accuracy and
generate even more frustration than a traditional input
method. Moreover, for relatively small screens such as those
available on many mobile devices, the area of most interest
might be partially occluded by the fingers. For stylus-based
products, on the other hand, the need for an additional
device itself may attenuate the benefits of the approach.

We propose to take advantage of the fact that screen
and camera are usually on opposite sides of the phone. With
this setup, the user can look at the screen while the
movement of a finger or a hand is captured by the camera,
tracked by simple yet robust algorithms, and finally used to
control the pointer position. This method builds on a tool
available on virtually all cellphones; moreover, because it
does not require the finger to be moved on a physical

surface, the spatial sensitivity can be adjusted by varying the
distance between phone and finger. Finally, because the
hand is constantly behind the screen, there is no risk of
occlusions.

Our contribution lays in the definition of a simple yet
effective pointing strategy that only requires hardware
available on most devices. We also present a fast algorithm
that is able to deal with factors neglected by other
approaches, such as camera shake or poor picture resolution.
Finally, we performed a user study that confirmed that our
algorithm, capable of real-time execution on a Nokia N95
phone, overcomes some of the limitations of other pointing
strategies.

2. RELATED WORK

Recent advancements in computer vision have paved the
way for designing natural control of the cursor's position;
many systems are available that allow for simply moving a
finger in 2D on a generic surface, or even in 3D. The
common denominator to these techniques is the need for
finger tracking. However, despite the interest generated by

Figure 1: The user can control the pointer by simply moving his
or her hand behind the phone.

this subject, none of the many strategies proposed so far has
become a de facto standard. What follows is a review of
existing methods, most of which are successful but do not
satisfy one or more of the constraints of our problem.

A common approach to finger tracking is marker-based.
Many augmented reality applications rely on gloves with
embedded retro-reflective markers for high accuracy and
reliability as in Ulhaas et al. [1]. Zeng et al. use a simple
color patch to ensure trackability of the fingers as they move
over other parts of the body [2]. The main drawback of
marker-based methods is the need to “wear” special aids.

A second class of tracking algorithms exploits
temperature as a means of segmenting objects. The
EnhancedDesk uses a simple threshold on the infrared image
obtaining very robust results [3]. The ThermoTablet extends
this idea to track fingers, airbrushes, or even brushes dipped
in warm water, as they move on a surface upon which
images are retro-projected [4]. Though fairly robust,
thermal-based methods require expensive infrared cameras
that are not available on commercial cellular phones.

A larger set of methods for bare hand tracking is based
on visible light: contour-based methods are very popular [5,
6, 7, 8], other approaches such as correlation [9] and
wavelets-based methods are also common [10, 11]. These
methods are generally computationally intensive and some
even require multiple cameras. Less computationally
intensive approaches use color segmentation in the
appropriate color space [12, 13, 14]; however, most of these
are still beyond the capabilities of a mobile device. In
addition, none of the above techniques addresses the
problem of hand-held cameras which are affected by blur
and relative motion with the scene background.

3. METHODS

For a pointing strategy to work, real-time execution is
crucial and this, in turn, poses strict requirements on the
computational complexity and memory efficiency of our
tracking algorithm. In every frame, the aim is to detect the
position of a hand placed in front of the camera (i.e. behind
the screen). In order to achieve this efficiency, we have
designed an algorithm suitable for uncluttered backgrounds.
In the following we describe how we perform the tracking to
achieve the required robustness at the desired frame-rate.

3.1. Algorithm description

Our algorithm detects fingers using image gradients in a
color space relevant to human skin. The algorithm's flow is
shown in figure 2. Skin pigmentation is well represented in
the YCrCb color space: by working in the red chrominance
channel, we can expect that the magnitude of the gradient be
higher around the hand's contours than anywhere else. We
calculate row and column gradient images, and then sum
along each axis. In order to find a consistent pointer location

Figure 2: Flow chart of the algorithm. Horizontal and vertical
gradients of the red chrominance (Cr) are accumulated along
rows and columns, and are weighted with Gaussian distributions
centered around the coordinates predicted from previous frames.
The first maximum above threshold provides the coordinates of
the finger.

∑
cols

∣ ∂∂ y∣

Threshold + Max

RGB to Cr

∑
rows

∣ ∂
∂ x∣

∣ ∂
∂ y∣∣ ∂∂ x∣

r c

r c

with relation to the hand, the finger tip is localized by
detecting the first maximum from the top and from the left in
the summed gradient vectors.

A small memory footprint is achieved by directly
calculating the gradient vectors, instead of computing the
whole gradient image. This approach is similar to that of
Adams et al. [15]. We create two mono-dimensional vectors,
gradX and gradY. Given a column c and a row r, the
gradient vectors are computed as:

gradY c =∑
i
∣I Cr i , c −I Cr i−n , c ∣ ,

gradX  r =∑
j
∣I Cr r , j −I Cr r , j−n∣

where ICr is the red chrominance channel of the image and n
is the distance, in pixels, across which the difference is
computed. The use of n>1 is motivated by the fact that the
transition from background to foreground is not abrupt and
takes, in fact, a few pixels, primarily due to camera optics
and motion blur.

In a noise-free image, the first peaks in gradX and
gradY would provide the coordinates (c,r) of the fingertip.
To attenuate the effect of noise, we employ a fixed threshold
(about 15% of the typical maximum value) so that only
significant pixel differences contribute to the gradient.

Inter-frame information is exploited by predicting the
position of the finger based on the information collected in
previous frames. Since the finger trajectory for the purpose
of controlling a pointer can be very well approximated by a
piecewise linear function, we use a simple linear predictor:

c t=2⋅ct−1−c t−2 ,

r t=2⋅rt−1−r t−2

where c and r are the coordinates of the point and the
subscripts refer to the frame index. We then weigh the
gradients with a Gaussian distribution centered on the

predicted position and with standard deviation 1.5 times the
size of the image; the large variance makes the Gaussian a
vague prior, important to allow unexpectedly large
movements. The finger location is finally determined as the
first maximum that is higher than a percentage of the highest
value in the resulting vectors. Lastly, we smooth the location
of the detected position by averaging it over multiple frames.

3.2. Implementation

We used a Nokia N95 for development and testing. On this
device, the acquisition frame-rate can be as fast as the
viewfinder, which runs at 30 fps providing 320 by 240
(QVGA) images. The core of the algorithm was
implemented in Symbian C++, using exclusively fixed point
arithmetic, while interface and camera control are managed
through Python for S60.

4. RESULTS

4.1. Performance

The algorithm takes about 20 ms to run on a single
viewfinder image, allowing real-time operation. As long as
the exposure is short enough to eliminate motion blur, the
hand can be waived as fast as needed.

The tracking robustness of the algorithm depends on the
background: figure 3 shows a collection of situations of
increasing difficulty. The algorithm was designed to work on
reasonably uncluttered backgrounds, and works well in the
situations shown in the top row. We have found that
acceptable background environments are nearly always
available, often a wall or ceiling. Of course, the algorithm's
performance degrades as the scene gets cluttered by the
presence of objects whose color presents a strong gradient in
the red chrominance channel.

Figure 3: The proposed pointing interface can work in different
environments. The top row shows a sample of backgrounds that
are suitable for use with our interface. Note that the results are
not affected by the hand's pose, and both pointing fingers and fists
can be used. As the background becomes cluttered, however, the
presented algorithm is insufficiently robust (bottom row).

Figure 4: Distribution of task completion times. The blue solid
line refers to our approach while the red dotted line refers to the
button-based method. Note that the mean is significantly lower for
the vision-based interface: 16.3s vs 23.2s.

4.2. Usability

In order to evaluate the proposed pointing strategy, we
designed a test representative of a common task on mobile
devices: navigation of an image too large to fit on the
display. Using our interface and moving his or her hand
behind the phone, a user can drag the image around to visit
its different regions. We asked several subjects to browse
pictures both with our method, and by using the phone's
buttons, which provide an inherently discrete input strategy.
We used pictures of groups of people and measured the time
that was necessary for them to count the number of people
with red eyes. Red eyes were added to randomly selected
faces in the pictures. Before taking the test, the subjects
were allowed to familiarize themselves with both pointing
strategies as well as the original pictures and the task.
Showing the images beforehand allowed us to focus our
results on navigation since it provided an initial estimate of
the position of the different faces, thus reducing the effect of
different search strategies.

A total of 13 subject were used. The results of the
comparison are shown in figure 4. The average time to
complete the task was 16.3s (std 6.1s) with our approach
and 23.2s (std 5.9s) with the discrete strategy, thus
indicating that our vision-based approach is effective. The
experiment also showed that the proposed interface feels
fairly natural to a new user: it took on average a minute for
our users to be ready to take the test.

5. LIMITATIONS AND FUTURE WORK

In order to achieve an efficient implementation, the tracking
algorithm was designed for uncluttered backgrounds. Future
work could seek to improve the level of clutter in which
hand tracking is possible.

The proposed approach proved to be robust across
different hand configurations: a fist, an open hand, or a
single finger all get tracked with the same reliability. This
suggests that gesture recognition can be integrated to add
capabilities such as clicking or dragging.

6. CONCLUSIONS

In this paper we presented a novel pointing interface for
mobile devices. Our approach exploits the ubiquity of
cameras and the naturalness of controlling a pointer by
freely moving a hand. The algorithm runs in real-time on a
cellphone and we have verified that the proposed method
provides better usability than buttons for a common
navigation task. A video showing the algorithm in action is
available at:
http://www.soe.ucsc.edu/~orazio/demoICIP08.html

7. ACKNOWLEDGMENTS

The authors would like to thank Nokia for providing the
phones used for this paper. Natasha Gelfand and Andrew
Adams provided invaluable support for getting started with
developing on the N95. Mariano I. Lizarraga helped greatly
with stimulating discussions about both the algorithm and its
implementation.

8. REFERENCES

[1]: K. Dorfmueller-Ulhaas and D. Schmalstieg, "Finger Tracking
for Interaction in Augmented Environments", Proc. of the 2nd
ACM/IEEE Int'l Symposium on Augmented Reality, pp. 55-64,
2001.
[2]: J. Zeng, Y. Wang, M. Freedman, and S.K. Mun, "Color-
Feature-Based Finger Tracking for Breast Palpation
Quantification", Proc. Int'l Conf. on Robotics and Automation, pp.
2565-2570, 1997.
[3]: H. Koike, Y. Sato, and Y. Kobayashi, "Integrating Paper and
Digital Information on EnhancedDesk: A Method for Realtime
Finger Tracking on an AugmentedDesk System", ACM
Transactions on Computer-Human Interaction, pp. 307-322, 2001.
[4]: D. Iwai and K. Sato, "Heat Sensation in Image Creation with
Thermal Vision", Proc. of the ACM SIGCHI Int'l Conf. on
Advances in Computer Entertainment Technology, pp. 213-216,
2005.
[5]: H. Zhou and Q. Ruan, "Finger Countour Tracking Based on
Model", Proc. of the Conf. on Computers, Comunications, Control
and Power Engineering, pp. 503-506, 2002.
[6]: J.M. Rehg and T. Kanade, DigitEyes: Vision-Based Human
Hand Tracking, Tech. report, CMU-CS-93-220, 1993.
[7]: J. MacCormick and M. Isard, "Partitioned sampling,
articulated objects, and interface-quality hand tracking", European
Conference on Computer Vision, pp. 3-19, 2000.
[8]: J. Segen, "Gesture VR: Vision-Based 3D Hand Interface for
Spatial Interaction", ACM Multimedia Conference, pp. 455-464,
1998.
[9]: R. O'Hagan and A. Zelinsky, "Finger Track - A Robust and
Real-Time Gesture Interface", Australian Joint Conference on
Artificial Intelligence, pp. 475-484, 1997.
[10]: J. Triesch and C. von der Malsburg, "Robust Classification of
Hand Postures against Complex Backgrounds", International
Conference on Authomatic Face and Gesture Recognition, pp.
170-175, 1996.
[11]: R.R. Brooks, L. Grewe and S.S. Iyengar, "Recognition in the
Wavelet domain: A survey", Journal of Electrical Imaging, pp.
757-784, 2001.
[12]: M. Bencheikh-el-hocine, M. Bouzenada, and M.C. Batouche,
"A New Method of Finger Tracking Applied to the Magic Board",
Proc. of the Int'l Conf. on Industrial Technology, pp. 1046-1051,
2004.
[13]: J. Letessier and F. Berard, "Visual Tracking of Bare Fingers
for Interactive Surfaces", Proc. of the ACM Symposium on User
Interface Software and Technology, pp. 119-122, 2004.
[14]: W. M. Tsang and K. Pun, "A Finger-Tracking Virtual Mouse
Realized in an Embedded System", Proc. Int'l Symposium on
Intelligent Singal Proc. and Commu. Systems, pp. 781-784, 2005.
[15]: A. Adams, N. Gelfand, and K. Pulli, "Viewfinder
Alignment", Eurographics, 2008.

	A camera-based pointing interface for mobile devices
	Abstract

