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Abstract 
Vision based tracking systems for surveillance and 

motion capture rely on a set of cameras to sense the envi-
ronment. The exact placement or configuration of these 
cameras can have a profound affect on the quality of 
tracking which is achievable. Although several factors 
contribute, occlusion due to moving objects within the 
scene itself is often the dominant source of tracking error. 
This work introduces a configuration quality metric based 
on the likelihood of dynamic occlusion. Since the exact 
geometry of occluders can not be known a priori, we use 
a probabilistic model of occlusion. This model is exten-
sively evaluated experimentally using hundreds of differ-
ent camera configurations and found to correlate very 
closely with the actual probability of feature occlusion. 

1. Introduction  
In designing a vision-based tracking system it is im-

portant to define a metric to measure the “quality” of a 
given camera configuration. Such a quality measure has 
several applications. By combining it with an optimiza-
tion process we can automate camera placement in com-
plex environments. Further, dynamically changing 
arrangements require some metric to guide the automatic 
choice of best configuration. For example, a multi-target 
tracking system with many pan-tilt cameras might dy-

namically focus different subsets of cameras on each tar-
get. A metric is need to guide this process. 

Some applications require dynamic reconfiguration 
due to bandwidth or processor power limitations. For ex-
ample, consider the tracking system shown in Figure 1 
with dozens of cameras. Due to bandwidth constraints 
only a subset of the cameras can be active. The figure 
shows three possible subsets. Which subset is best? A 
quality metric allows us to choose the camera configura-
tion that enables the best tracking performance. 

In a motion capture or surveillance system, multiple 
cameras observe a target moving around in a working 
volume. Features on the target are identified in each im-
age. Triangulation or disparity can be used to compute 
each feature’s 3D position. In such a system, performance 
degradation can come from two major sources: low reso-
lution which results in poor feature identification; and 
occlusion which results in failure to see the feature. Oc-
clusion is often the more important of the two. When not 
enough cameras see a feature, it is difficult or impossible 
to calculate its 3D position.  

Occlusion may be due to either dynamic or static ob-
jects in the scene. Static occlusion is commonly caused by 
limited viewing angle, walls, and other known obstacles. 
Dynamic occlusion is caused by the unknown motion of 
the target itself. 

 

 
Figure 1 A tracking system shown with three possible configurations of active cameras. A quality 
metric is necessary to dynamically reconfigure the system subject to real-time information and con-
straints. 
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A quality metric for placing cameras should reflect 
the impact of all relevant factors. A great deal of prior 
work exists which addresses image resolution and the 
impact of static geometry, but no metric yet exists for 
evaluating the impact of dynamically changing geometry.  

This work addresses that need by introducing a qual-
ity metric that accounts for dynamic feature occlusion. 
The metric itself is the primary contribution of this work. 
In addition, the metric’s predictive power is evaluated 
experimentally on many actual camera configurations, 
and shown to have high correlation with actual occlusion 
probabilities. 

2. Related work 
The effects of static occlusion on camera placement 

are well studied. For example, the camera placement 
problem can be regarded as an extension to the well-
known art-gallery problem [8, 11]. Both problems have 
the goal of covering a space using a minimum number of 
cameras and the solutions are greatly affected by the visi-
bility relationship between the sensor and target space. 
However, the art-gallery problem focuses on finding the 
theoretical lower-bounds on the number of guards under 
known geometry. Automatic sensor planning has also 
been investigated in the area of robotic vision [15, 16, 17, 
18, 21], motion planning [4, 5, 20],  image-based model-
ing [10], laser scanning [12, 13, 14], and measuring 
BRDFs [7]. The target domain in all these cases is a static 
object, and the task is to find a viewpoint or a minimum 
number of viewpoints that exposes the features of interest 

on the target as much as possible. Unfortunately, nearly 
all work in these areas assumes that scene geometry can 
be evaluated deterministically. This paper introduces a 
quality metric that explicitly accounts for the non-
deterministic nature of dynamic occlusion. 

Image resolution has also been proposed as a metric 
for placing multiple cameras. Olague et. al. [10] approxi-
mated the projective transformation of a camera using 
Taylor expansion, and used a scalar function of the co-
variance matrix as the uncertainty measure. Wu et. al. 
[19] proposed a computational technique to estimate the 
3D uncertainty volume by fitting an ellipsoid to intersec-
tion of projected error pyramids These methods consider 
limited image resolution as the only cause of 3D uncer-
tainty. However, occlusion is frequently present in fea-
ture-based motion tracking systems and is often the 
dominant source of error.  

Some researchers have accounted for multiple 
sources of error. As one example, Cowan and Kovesi 
consider resolution, focus, static occlusion, and field of 
view in designing a quality metric [3]. However none of 
the combined metrics account for the effects of dynamic 
occlusion. 

A complete quality metric for evaluating camera con-
figurations would include many factors, including static 
occlusion, image resolution, and dynamic occlusion. This 
work augments previous research by introducing a metric 
which predicts the impact of dynamic occlusion.  

3. Occlusion metric 
Occlusion occurs when a target point is not visible 

from a camera. This occlusion may be caused by either 
static or dynamic objects in the scene, as shown in Figure 
2. The challenge to computing the error caused by dy-
namic occlusion is that we do not know exactly where the 
target or occluder will be at any time. Without knowledge 
of target and occluder location it is impossible to arrange 
cameras such that the target is guaranteed to be visible. 

We address the dynamic occlusion problem by first 
assuming perfect knowledge and then making several 
approximations that allow a probabilistic model to be 
developed. Assume first that we know exactly the geo-
metric model of a target object and the path that the object 
takes during a tracking session. We can evaluate the error 
caused by dynamic occlusion precisely, because we can 
simulate the exact geometry and count exactly how many 
feature points are occluded from each camera viewpoint 
at any time. Of course, this method is not very useful for 
designing a real tracking system. In reality, the path that a 
target takes could vary greatly and camera configurations 
optimized for one specific path may be poor for other 
paths. We seek to find a camera configuration that best 
avoids occlusion for all possible paths. 

Given a camera configuration, , we would like to 
predict whether features are likely to be observed by an 

 
Figure 2 Both static and dynamic occlusion can
affect the probability of observing features. In 
this example static occlusion by the lamp exists
between the left camera and point A. This sort of
occlusion can be evaluated deterministically.
Dynamic occlusion exists between the right cam-
era and points B and C. Since this occlusion de-
pends on the time varying pose of the person,
this occlusion is evaluated probabilistically. 
 



adequate number of cameras. Since the number of observ-
ing cameras will vary depending on feature location and 
occluder position, we express the likelihood of observa-
tion as a probability function. For real camera configura-
tions, this function can be empirically measured. For 
example, Figure 3 shows the measured probability that 
point features will be observed by N cameras. This data 
represents the probabilities for one possible camera con-
figuration, during a single motion capture session. An 
ideal predictor would allow the probability distribution 
function, Poc( ), to be estimated for any given camera 
configuration without physical experimentation. 

A quality metric is a mapping from a camera configu-
ration to a single scalar value. Since most tracking sys-
tems rely on observing a feature from more than one 
viewpoint, we define our metric as the probability that at 
least two cameras observe a feature. Letting Q( ) repre-
sent our quality metric, and maxcam be the total number 
of cameras, we have: 
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Since occlusion characteristics may vary over the tar-

get space (the entire working volume of interest), we de-
fine a spatially dependant quality metric. We make the 
assumption that the probability of occlusion at each posi-
tion is independent.  Thus by sampling the target space 

and aggregating the per-point metric, the mean probabil-
ity of occlusion can be computed. For example if the tar-
get space is a room, then we calculate the probability of 
occlusion at n sample points in the room, and aggregate 
these values. Further, it is straightforward to incorporate 
knowledge of where features are more likely to be lo-
cated. The sampled points can merely be drawn from a 
non-uniform feature density function, δf.  
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Where P represent a particular point in the scene drawn 
from distribution δf, and n is the number of samples 
drawn.  

In a complete tracking system, the distribution δf will 
be time varying due to precisely the factors that require a 
quality metric. For example, suppose that we are certain 
our target is currently in the left half of the room. A good 
quality metric would prefer camera configurations that 
more carefully observe this region. In this case, δf should 
have zero probability in the right half of the room, so that 
no samples are used in the irrelevant region. In this work 
we focus on the quality metric itself, rather than a com-
plete tracking system. Thus in the evaluation presented 
later, we simply set δf to be a distribution that uniformly 
covers space. 

The probability of occlusion is clearly dependant on 
the precise nature of occluders. Although we may not 
know exactly where the “occluders” will be, we may have 
some idea as to how likely they are at certain positions 
and orientations. Given a density function for occluder 
positions, δo, we can generate possible occluders by draw-
ing samples from the distribution. Figure 4 shows an ex-
ample configuration of three cameras and a particular 
sampled occluder. In this case two cameras can see the 
target feature. For each possible occluder, we calculate 

 
Figure 3 The likelihood that target features are
occluded can be represented as a probability 
distribution function over the number of cameras
from which the feature is visible. This plot shows
the probability of observing a feature during an
actual motion capture session. Note that it is
most likely that about half of the cameras see a
feature, but that occasionally only a few or
nearly all cameras can observe the feature. 
 

 
Figure 4 A randomly sampled occluder will pre-
vent a given feature point from being seen by 
some cameras. In this case cameras B and C 
observe the feature. 



how many cameras can observe the target point, P. The 
result for each occluder are aggregated into a single esti-
mate of occlusion characteristics. Drawing m samples 
from the space of all possible occluders gives us a distri-
bution describing the expected probability of occlusion at 
a point. 

 

( , ) ( , , ) /
o

ococ m
O

P P O
δ∈

≈ ∑ ''P P  ( 3 )

 
Many occluder distribution models are possible. A 

feature can be occluded either directly by the object it is 
attached to, or by another object from a distance. In the 
most general case, the visibility of a point depends on the 
position, orientation and size of the occluder.  

Although it would be possible to sample occluders of 
all possible sizes, at all possible positions, in all possible 
orientations, the size of this space would lead to an ineffi-
cient implementation. In this work we observe that the 
worst case occluders can be drawn from a much smaller 
sample space. Furthermore, the evaluation presented in 
the next section shows that the simplification of sampling 
only the worst case occluders still leads to a metric that 
closely correlates with actual measured data.  

The worst case occlusion occurs when the occluder is 
very near the point, as shown in Figure 5. In this location 
a whole hemisphere is occluded. To obtain a conservative 
estimate of occlusion, we need only simulate this worst 
case occluder pose. When the occluder is in this position, 
very near the target point, the size of the occluder does 
not matter. Therefore, to generate a conservative estimate 
of occlusion at point P, we define the occluder density 
function, δo, to include only planar occluders through P, 
allowing variation in orientation, but omitting size and 
position. As a further simplification the distribution of the 

planar occluders is defined to be uniform.  
Combining equations 1-3, the quality of a given cam-

era configuration can be written as the probability that at 
least two cameras see a feature point. We evaluate this 
value by sampling over all possible feature locations and 
all possible occluder positions. 
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Static occlusion is caused by static objects in the 

scene that are known a priori and time-invariant. Due to 
these occlusions, a point P is not visible from certain 
cameras. These occlusions can be easily included in the 
above formulation: We simply need to perform a visibil-
ity test to see if any static object in the scene is between 
point P and the optical center of each camera. If P is not 
visible, the given camera is marked as occluded, regard-
less of the orientation of the random planar occluder. 

The use of sampling also allows us to easily encode 
further application-specific knowledge into the quality 
metric. For example, one might know a priori that certain 
parts of the target spaces require higher robustness. This 
can be incorporated by increasing the number of samples 
drawn from those regions.  

4. Evaluation 
Although we have formulated of our quality metric 

based on physical principles, we have made some simpli-
fying assumptions: that the probability of occlusion is 
independent across spatial locations, that occluders can be 
modeled conservatively, and that occluder orientations are 
uniformly distributed. Therefore we would like to verify 
that the simplified model adequately predicts reality. We 
extensively evaluated our metric by comparing predicted 
probabilities of occlusion to actual measured probabilities 
for 256 different camera configurations. We found that 
the proposed metric correlates well with experimental 
data. 

Each of the 256 unique camera configurations was 
constructed by placing between 1 and 8 cameras on a cir-
cular ring surrounding the working volume. The ring 
around the target area measured roughly 4m x 4m, with 
motion observable in a 2m x 2m area in the center. Spac-
ing between the cameras varied from nearly uniform to 
heavily weighted to one side. Camera height varied be-
tween approximately 1m and 3m from the floor. Figure 6 
shows an example of three of the configurations. Because 
of the wide variance in how cameras were placed, it is 
expected that some of the configurations would result in 
relatively little occlusion, while some would result in fre-
quent occlusion. Cameras were calibrated using standard 
methods [1, 2, 6].  

Figure 5 The size and orientation of an occluder 
determine the shape of the occluded region. A
conservative estimate of occluded region can be
made by assuming the occluder is very close to 
point P. In this case an entire hemisphere of
camera locations will not be able to see point P. 
 



For each configuration, we attached a bright LED on 
various parts of a human body such as the head, shoulder, 
knee, etc. In each configuration, five trials were run, each 
with a different LED position in order to minimize acci-
dental bias based on body attachment location. We asked 
the person to move around in the working volume for 
approximately 20 seconds in each trial, and sampled the 
cameras at 30Hz. The motion consisted of waving arms, 
turning, walking in circles, and similar actions meant to 
have suitable complexity  that marker occlusion could be 
expected. However markers were not explicitly covered, 
such as by placing a hand over a marker. 

By processing the video streams from the various 
cameras, we counted at each sampled time instant, how 
many cameras could see the bright LED feature point. 
Aggregating the number of “visible” cameras over all 
frames and all trials (with the LED placed on different 
body parts) yields a measured distribution function for a 
given camera configuration.   

In our implementation data is collected and stored to 
disk in real time. All evaluation was conducted offline in 
MATLAB. The metric we suggest is computationally 
quite simple and we are confident that it could trivially be 
included in a real-time system. 

Figure 3 shows the measured observation probability 
function for a single camera configuration. Due to space 
constraints it would be impossible to include numerical 
data for all 256 experimental conditions. Instead we ag-
gregate all experiments into a single plot which shows the 
correlation between our metric and measured data. 

A good model should predict a distribution that is 
similar to what is obtained from the experiment. In order 
to see the “similarity” quantitatively, we use a common 
regression analysis technique [9]. In order to perform the 
regression analysis, we use the metric defined in Equa-
tion ( 4 ). We compute an occlusion probability for each 
of the 256 camera configurations both from the experi-
mentally measured data and through our metric.  

The experimental and predicted probabilities are plot-
ted against each other in Figure 7. A perfect model would 
generate a straight line from (0,0) to (1,1), showing per-
fect correlation. The prediction from our model is quite 
good, with a correlation between experiment and predic-

tion of 0.97, quite close to 1.0. Moreover, the correlation 
between different sessions in the experimental data itself 
is 0.98, which means that there is variance in the meas-
ured data itself. Thus a correlation of 0.98 is the upper 
bound of how well the experimental data can be pre-
dicted. We also computed the mean error in predicted 
probability across all data points as 0.06 with a standard 
deviation of 0.05. From the graph we can see that the pre-
dictions improve as we obtain more desirable camera con-
figurations. Given that, we conclude that the simplified 
occlusion model used in our quality metric predicts the 
actual occlusion behavior quite well.  

The collected data is shown in another form in Figure 
8. In this case, the predicted and experimentally acquired 
probabilities of occlusion are plotted against the number 
of cameras in the configuration. Again we see that the 
range of predicted probabilities are well matched by em-
pirical observation. In addition, this plot graphically illus-
trates that the more cameras there are in a system, the less 
often occlusion occurs. For example, when only four 
cameras are available, using the best configuration tested, 
feature points have a 90% probability of being visible. 
Using four cameras and a poorly chosen configuration, 
features would have only a 60% probability of being visi-
ble.  

The upper envelope of this plot gives some indication 
to the number of cameras required for a given robustness. 
If it is desired that feature points be visible 95% of the 
time, then at least six cameras are required to cover the 
working volume. 

It should be noted that the plot shown in Figure 8 
contains only data from the 256 configurations generated 

Figure 7 The predicted probability of observing 
features is plotted against the measured prob-
ability for each of 256 different camera configu-
rations.  Each dot represents a unique camera 
configuration. The predicted and measured data 
have a correlation of 0.97. 

  
Figure 6 Three camera placement scenarios out 
of the set of 256 conditions tested. 
 



during our experimentation. Both higher and lower qual-
ity configurations are possible. For example, our eight 
camera configuration had cameras even distributed 
around the working volume. It is certainly possible to 
create a bad configuration from eight cameras, for exam-
ple by placing them all right next to each other, even 
though that possibility is not represented in this plot. 
Similarly it may be true that alternate configurations 
would produce higher quality. 

5. Discussion 
This work has introduced a quality metric for camera 

configurations based on the probability of dynamic occlu-
sion. The metric was extensively evaluated by empirical 
comparison with many actual camera configurations, and 
found to have high correlation to actual probabilities of 
occlusion. 

One surprising aspect of the results presented here is 
the simplicity of the proposed metric. It assumes a uni-
form distribution of feature measurement locations. It 
makes a worst case assumption about the size, shape, and 
location of occluders; modeling them as always large and 
very close to the feature in question. The orientation of 
occluders is modeled as uniform. Despite these simplifi-
cations, we have found that the metric models reality sur-
prisingly well. The correlation between prediction and 
measured performance is very close to the upper bound of 
possible predictive performance. Therefore, we conclude 

that our simplifications were in fact justified, a more 
complex model of occlusion is not necessary.  

We are currently investigating the use of this metric 
to produce a camera configuration selector. In large track-
ing systems with hundreds of cameras, it is infeasible to 
have all cameras active at all times. The metric allows us 
to choose the optimum subset of cameras which meet 
both our resource and robustness requirements. 
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