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Abstract—Time-of-flight range sensors have error characteristics, which are complementary to passive stereo. They provide real-time
depth estimates in conditions where passive stereo does not work well, such as on white walls. In contrast, these sensors are noisy
and often perform poorly on the textured scenes where stereo excels. We explore their complementary characteristics and introduce a
method for combining the results from both methods that achieve better accuracy than either alone. In our fusion framework, the depth
probability distribution functions from each of these sensor modalities are formulated and optimized. Robust and adaptive fusion is built
on a pixel-wise reliability weighting function calculated for each method. In addition, since time-of-flight devices have primarily been
used as individual sensors, they are typically poorly calibrated. We introduce a method that substantially improves upon the

manufacturer’s calibration. We demonstrate that our proposed techniques lead to improved accuracy and robustness on an extensive

set of experimental results.

Index Terms—Time-of-Flight sensor, multisensor fusion, global optimization, stereo vision.

1 INTRODUCTION

DEPTH sensing is one of the fundamental challenges of
computer vision. Applications include robotic naviga-
tion, object reconstruction, and human computer interac-
tion. A range sensor that is robust, accurate, and operates in
real time would be the enabling component in these
applications. Unfortunately, no existing range sensing
method is perfect on its own. For example, laser scanners
are too slow for real time usage, passive stereo can easily
fail on textureless scenes, photometric stereo is prone to
low-frequency distortion, and only-recently-available Time-
of-Flight (ToF) sensors are low in resolution, noisy, and
poorly calibrated.

The ToF sensor provides real-time independent range
estimates at each pixel, and has only recently started to
become available from companies such as Canesta [1],
SwissRanger [2], 3DV [3], and PMD [4] at commodity
prices. Due to their recent introduction, most applications
use the sensors individually and rely on the manufacturer’s
calibration. Despite their promise, relatively little literature
explores the ways in which the quality of these sensors
might be improved.
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This paper seeks to improve the range estimates
provided by the ToF sensor by combining it with both the
ToF and relatively more sophisticated algorithms common
to passive stereo vision. The ToF sensor is characterized by
independent pixel range estimates, each of which has a
relatively high noise that is difficult to model around the
true depth because many factors may be present. Optical
imperfection and scene reflectance are two main noise
resources. Many of the industry calibration works have
reported improvements on removing optical issues by
testing error models. Unlike these approaches, we utilize
structured light method to compute the ground truth depth
and compare that with the depth reported by the ToF
sensor. This simple, yet effective, nonparametric method
allows us to measure the optical errors as well as depth bias,
without the need for error models.

Our success in fusing the ToF sensor with passive stereo
vision is based on their complementary nature. Rich texture
causes difficulties for the ToF sensors because these sensors
frequently have biases as a function of object albedo.
Conversely, passive stereo excels on such regions as a
unique local minima appears in the cost volume. However,
passive stereo performs poorly on textureless regions,
repeated patterns, and occluded areas, which will cause
multiple local minima. In such regions, the ToF sensors can
exceed passive stereo by calculating the time delay, while the
emitted light is reflected back from objects. We explore this
complementary nature to fuse the probability distribution
functions of the depth estimates from each of these sensor
modalities by using a Markov Random Field (MRF), which
can produce a combined sensor with superior characteristics.

In this MRF model, the ToF sensor can be regarded as
providing local data, while the passive stereo methods are
quite sophisticated and have been carefully categorized
according to the effects of changing the local matching
function, aggregation function, and global regularization
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[5]. We apply belief propagation (BP) to perform global
optimization on the combined sensor and show that global
optimization improves the ToF sensor’s accuracy, just as it
can improve passive stereo vision.

Our motivation to combine multiple sensors requires that
they be calibrated in a common coordinate frame. Unfortu-
nately, the ToF sensor is usually designed only to provide
relative depth, as opposed to measurements in a calibrated
euclidean frame. The main contributions of this paper are
two-fold: 1) a method to calibrate the ToF sensor and passive
stereo into a common euclidean coordinate system, and 2) a
method for using data from both the ToF sensor and passive
stereo to produce enhanced depth estimates by global
regularization. Results show that the combined sensor can
reduce the depth error from 1.8 percent to 0.6 percent in a
1.5 meter distance range. Although this distance range is
limited, we envision the proposed calibration and fusion
approach can also be employed for long distance range.

2 REeLATED WORKS

There are many ways to obtain scene depth. In general, they
can be categorized into two major classes: passive methods
and active methods. Among the plethora of passive
methods, stereovision [6] is probably the most well known,
least expensive, and most widely used. It is beyond the
scope of this paper to provide a brief review of existing
stereo methods. Interested readers are referred to an
excellent review by Scharstein and Szeliski [5]. Despite
significant progress made during the last few years, the
fundamental problems in stereo, such as occlusion, texture-
less, and repetitive patterns, remain unsolved.

The ToF sensors use an active technique to obtain near
real-time scene depth. They are able to produce a full depth
frame simultaneously, thereby allowing applications to
dynamic scenes. There are mainly two types of ToF sensors.
One utilizes modulated and incoherent light, which is based
on phase shift that can be designed using standard CMOS
or CCD technology [7], [8], [9]. The other is based on an
optical shutter technology [10], [11]. The one we use belongs
to the first category of ToF sensors. Differently from 3D
scanning and structured coded light approach [12], [13], the
ToF sensor can return a full frame depth measurement in
real time instead of a point or a scan line.

The basic principle of phase shift is based on measuring
the phase delay of the reflected light. The ToF sensors can
return two types of data given the emitted and the returned
signal: a depth map from phase shift and an intensity image
from the amplitude. Note that some of the ToF sensors can
also return a 3D point cloud of the scene, and the depth
map is treated as the Z value.

Due to the complexity of the optical system and the real
scene, the quality of the depth returned from the ToF
sensors is subject to a number of noise factors. In the optical
system, the main noise source is the photon shot noise that
is theoretically Poisson distributed, and inhomogeneities in
the near-infrared light filed of the LED array are also
reported to disturb the depth measurement [14]. Internal
and external temperatures are also observed to influence
the depth measurement [15]. Additionally, other noise
factors, such as multiple reflection, light scattering, glossy
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reflection, ambient light, and color difference have side
effects to depth quality.

Previous works of calibration methods [16], [25], [18], as
well as in-pixel background light suppression [8] and
denoising by nonlocal median filter [19], have proven to
be useful to reduce such noises. However, these methods
have primarily looked at the specified error model of the
ToF sensors that are hard to correctly model. Some of
the methods use the depth reported from the ToF sensor
alone to calibrate itself, which is problematic. Unlike these
approaches, our approach is a nonparametric method. It
requires no explicit error models which provide a general
calibration method that compensates the depth bias for real
scenes without assuming specifics of the ToF sensor.
Compared with several methods to obtain ground truth
depth, such as using a total station to measure coordinates
of an object [15] or resorting to the trackline [25] and a
robotic arm to determine ground truth depth [18], we obtain
ground truth depth from structured light method, which is
in high accuracy.

The depth maps returned from the ToF sensor are
commonly in low resolution. This makes them less appeal-
ing for most vision algorithms. Several super-resolution
methods [20], [21], [22] have been introduced to enhance its
resolution. They are mainly based on the fact that disconti-
nuities in range and coloring intend to coalign [23]. Our
approach can do upsampling coherently, as we calibrate the
ToF sensor and two stereo cameras into a common
coordinate system. Using any one of the cameras as a
reference view, we can obtain high resolution depth maps.

This paper does not intend to resolve all issues of the
ToF sensor, such as the capture frequency. Readers may
refer to [24] for details on how to increase it by a CMOS-
based technique.

There are already several approaches to merge the ToF
sensor with images captured from monochromatic or stereo
cameras. In [25], a projective texture technique is used to
align depth from the ToF sensor to a pixel on an RGB
camera. In [26], [27], depth accuracy is improved by
merging regional selected depth from stereo matching and
depth from the ToF sensor. The comparison of depth
accuracy between the ToF sensor and stereo rig is reported
by Beder et al. [28]. The most similar setup to ours is [29],
which aims to improve the depth by finding a dense
correspondence between the stereo rig and the ToF sensor.

Another contribution of our work is that most of the
previous methods are not able to give a metric report of the
quantity of improvement compared to the state-of-art
methods in stereo. In this paper, we obtain depth maps,
both from state-of-art stereo methods and a structured light
method. Thus, a quantitative evaluation on a number of real
scenes is available by calculating the numerical difference
between our approach and the ground truth.

3 MULTI-SENSOR SETUP

In this paper, we set up a ToF sensor with a pair of cameras
(as shown in Fig. 1). The stereo cameras have a baseline
around 100 mm, and they are verged toward each other
around 10 degrees from the parallel setup. Our setup is
designed to provide coverage at about one meter range.
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(a) (b)

Fig. 1. (a) Multisensor setup with two CCD color cameras and one
Swissranger SR3000. (b) Calibration setup. The rails on the table are
used to move the pattern.

Note that the 1 m range distance is not defined as the
distance from the object to the ToF sensor, but as the
distance inside the calibrated volume.

The ToF sensor we have is a SwissRanger SR3000 [2],
which can continuously produce a depth map with a
resolution of 176 x 144. Its operational range is up to 7.5 m
with the modulation frequency set to 20MHZ. In addition,
SR3000 will also produce an intensity image in the same
resolution based on amplitude. Together with two color
cameras, these three sensors can be calibrated into a
common coordinate system using the traditional calibration
method, which will be introduced in Section 4.3.

4 MULTISENSOR CALIBRATION

In this section, we introduce an empirical calibration
method to improve the depth accuracy, using our setup.

Our approach generates per-pixel Look-Up-Tables
(LUTs) to compensate the depth bias caused by various
scene reflectance (photometric calibration) and system noise
(geometric calibration). Given these LUTs, we first correct
the depth returned from the ToF sensor and then refine it by
merging with the depth from passive stereo.

Our calibration volume is within a 400 mm distance
range, which is sampled with 16 distance steps, and the
distance gap is around 25 mm. Experimentally, we notice
that the depth bias caused by scene reflectance variations can
be described using a per-pixel piece-wise linear function.

These linear functions are approximated using a black/
white chessboard planar pattern. The linear function is
estimated for each sampled distance. In the geometric
calibration, we first calibrate the ToF sensor and stereo
cameras into a common coordinate system. In this space, we
can easily refine the depth from the ToF sensor, given the
reference depth from the stereo. We now introduce these
two processes, in detail, in the following sections.

4.1 Photometric Calibration

We observed that the depth returned from the ToF sensor is
sensitive to different object reflectance. Fig. 2 shows an
example of this problem, using a chessboard planar object.

Previous work on photometric calibration either uses
median filter [30] or spline functions [25] to account for this
bias. The depth of the centered pixel is estimated based on
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Fig. 2. Example of depth bias from a white/black planar object. (a) The
intensity image returned from the ToF sensor. (b) The plane in 3D
rendered using depth returned by the ToF sensor. Note the black holes
are dark regions in (a).

the assumption that the accuracy of depth correlates with
intensities in a small neighborhood. In our approach, to
compensate for depth bias from various scene reflectance,
we estimate a piece-wise linear function via black and white
planar calibration objects inside the calibrated volume.

To obtain the minimal and maximal scene reflectance
from the ToF sensor, we placed these two planar objects at
the largest distance (near 1.7 m) inside our calibrated
volume, and the ToF sensor reports an average intensity
value of 25 for the black planar object and 205 for the white
planar object.

Then, we put the calibration objects at 16 sampled
distances and plot the depth estimation between black/
white planar object from each pixel. We notice that there is an
almost constant shift between measurements at each
sampled distance. Based on this observation, we build a
per-pixel depth bias LUT according to the scene reflectance.
Given the ToF sensor’s measurement of certain scene points,
its range bias is linearly interpolated based on its intensity
difference to the black and white reference intensity values.

In Fig. 3a, we find that the piece-wise model is nearly a
constant scalar, which fits well in our work to account for the
depth bias from various scene reflectance. Our calibrated
volume, although limited (from around 1.2 m to 1.6 m), has
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Fig. 3. Example of depth estimation at pixel (72, 75) from white/black
planar objects in 16 sampled distances. The Distance steps on the
horizontal axis denotes the number of sampled distance. The Distance
on the vertical axis denotes the depth in the scene read out from the ToF
sensor. At each sampled distance, the ToF sensor measured 10 times
and the averaged depth estimation is used. The resolution of the ToF
sensor is 176 x 144. In (a), the calibration range is around 1.0-1.7 m. In
(b), the range is extended to around 3 m. (a) Limited calibration range.
(b) Extended calibration range.
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two benefits to our fusion approach: 1) We do not need to
change the integration time. The integration time is similar to
the shutter speed of a digital camera. The shorter the
integration time, the fewer the accumulated photons, which
leads to a larger depth bias. The difficulty in changing the
integration time lies in the nonlinear depth bias, which is
difficult to calibrate. 2) The depth bias inside each distance
interval is very small. In photometric calibration, we divide
the volume into 16 distance intervals, which is only 2.5 cm
for each step. Our results show that the depth bias in each
interval is almost the same as the previous interval. This
demonstrates that a constant assumption of depth bias in
each small interval is reasonable. Additionally, by success-
fully fusing information from passive stereo, the noise from
the ToF sensor is suppressed and the depth bias is
compensated for by utilizing neighboring information.
Compared with other complex error models, such as [25],
[18], our model is simple. And more importantly, it is
nonparametric—we do not rely on specific error models.

We also test the depth difference, using black/white
planar board for an extended range in Fig. 3b. The integration
time controls the exposure time and can be varied from
200 s to 51.2 ms in steps of 200 us, whereas 0 corresponds to
an integration time of 200 us and 255 of 51.2 ms. We change
the integration time three times: 40 for 1.2 m-1.6 m, 50 for
1.6 m-2.2m, and 60 for 2.2 m-2.8 m. We find that although the
depth difference is not a constant across the entire range, its
change is smooth and slow. Therefore, a piece-wise linear-
interpolation model is a good approximation.

4.2 Geometrical Calibration

For each depth map from the ToF sensor, we first perform
photometric correction according to its intensity values, then
apply the geometric correction introduced in this section.

The ToF sensor we used (SR3000) returns a 3D point cloud
of the scene (its z value is the scene depth) and an intensity
image. By assuming an orthogonal projection from the point
cloud to the image, we can correspond each pixel coordinate
to a 3D point. The orthogonal projection may not be exact
because the camera lens performs a perspective projection.
However, the ToF’s camera system can be regarded as a weak
perspective projection which can be approximated using an
orthogonal projection plus a scale. In addition, the range
variation of the calibration board compared to the range
between the board and the camera is small. Therefore, the
approximation of orthogonal projection can be used.

Differently from the ToF sensor, a disparity map is
normally used to visualize the scene depth in the stereo
literature. The disparity map is defined as the horizontal
pixel displacements between the rectified left and right
images. We use the left camera as the reference camera. In
the fusion(Section 6), the cost of the stereo term is defined
based on disparity, while the cost of the ToF term is based
on the depth. We first convert the disparity in the stereo
space to depth, and then compare it with the depth from the
ToF sensor. Additional notations used in the geometric
calibration are introduced in the following paragraph.

Fig. 4 shows the concept of our geometric calibration.
Xtereo denotes triangulated 3D points from passive stereo.
We denote the passive stereo’s coordinate system as stereo
CS. By treating the ToF sensor as a regular camera, we can
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Fig. 4. Principle of geometric calibration. We calibrate the ToF sensor
and stereo cameras into the world CS and compute the per-pixel depth
bias by comparing depth from the ToF sensor and that from stereo
cameras. In the world CS, P is the precalibrated projection matrix of the
ToF sensor. K is the intrinsic matrix of the ToF sensor. Other notions are
introduced in the text.

calibrate it with stereo cameras. We denote its local
coordinate system as world CS. We call the calibrated ToF
sensor with the stereo ToF camera. The 3D points in this
space are represented by X,,,q. We refer to the point cloud
returned by the SR3000 as Xr7,r, and they belong to the raw
ToF sensor’s coordinate system ToF CS.

We compare the depth in the world CS. Therefore, it
requires two transformations to bring triangulated 3D
points from stereo and the 3D points read out from the
ToF sensor to this space. We use transformation matrix Ty,
to transform the triangulated 3D points from the stereo CS to
the world CS. We use transformation matrix T}, to transform
the 3D points from the ToF CS to the world CS.

We now introduce our method on how to compute T,
and T;,. We first calibrate stereo cameras and the ToF
sensor, using traditional calibration methods described in
[32], and then Ty, is computed as

T, (1)

where R; and 7; are extrinsic parameters of the ToF
camera. R; is a 3 x 3 rotation matrix and 77 is a 3 x 1
translation vector.

T}, cannot be explicitly defined because we do not know
the relationship between the ToF CS and the world CS 2.
Since the transformation of 3D points between these two
spaces is rigid, we estimate its scale s, rotation R;, and
transformation 75 to align these two coordinate systems

Ts w — [Rl

T’riyz’d = S * [RZ TQ] (2)

To reduce the errors involved in this process, we
compute 7Ty, in sampled distance (we have a total of
16 sampled distances). In our experiments, we use a
checkerboard that is movable on a metric board with two
guide rails (Fig. 1). We manually select the corner points in
the scene and read out Xyp,r directly from SR3000. To
compute its corresponding reference 3D points in the world
CS, Xuyoria, we first select these corners on the intensity
image returned by the ToF sensor and find their corre-
sponding corners in stereo cameras by using two homo-
graphy matrices H; and H,. Because the patterns are planar,
a homography matrix correctly describes the geometric
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relationship from one view to another, and this matrix can
be computed using at least four correspondences. In our
experiments, we use the RANSAC [33] method to robustly
estimate them. Since the projection matrices of the left and
right stereo cameras are precalibrated, we can triangulate
these corner features into stereo CS, and then transform
them to world CS using T,

Given Xyoiq and Xgereo, We estimate T3, using a closed
form method [34]. We summarize the approach of comput-
ing T}, in Algorithm 1.

Algorithm 1. Compute T3,

1) Select corner pixels on the pattern, and acquire pixel
correspondences from the ToF camera and stereo
cameras, using H; and H,.

2) Triangulate the matched pixels to get 3D point X o

3) Transform them using T, to Xy

4) Read out selected corner pixels’ corresponding 3D
points X7,r from the ToF sensor.

5) Compute the rigid transformation matrix 7}, from
3D-3D correspondences (X,,q and Xr,r) for each
sampled distance.

Given T}y, Ty, we can compare depth difference for each
pixel using

Ad(P) = Tszstereo - TthToF~ (3)

Ad is denoted as the geometric depth bias and stored in a
LUT. In each sampled distance, this depth bias is calculated
and added to the LUT. Finally, we have a 3D table whose
cell stores the correction value Ad(p).

4.3 Depth Refinement

Given LUTs from Photometric Calibration (LUT,) and
Geometric Calibration (LUT;), the ToF sensor’s depth
measurements are refined as described in Algorithm 2.

Algorithm 2. Refine depth using LUTs from the ToF sensor.

1) Locate two cells in LUT,, given the raw depth value
D at pixel (u,v).

2) Compute depth bias Dy;qs = a % I + b, where I is the
intensity value at pixel (u,v), and a,b are parameters
interpolated from values restored in LUT,,.

3) Compute refined depth using D; = D + Dy;,s, and
transform D; to world CS using T,; this depth is
denoted as Ds.

4) Locate two cells in LUT, based on D at pixel (u,v).

5) Linear interpolate depth bias Dy, from the bias values
in these two cells.

6) Compute refined depth D3 = D; + Dy;qs in world
space. Ds is the final depth.

5 CALIBRATION VERIFICATION

To evaluate the calibration result, we perform two experi-
ments. The metrics we used in the evaluation are depth
error (compared with ground truth depth) and Projection
Residual Error (PRE). We first define these two metrics.

e Depth error is defined as the average distance
between the reference depth (generated by passive
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Fig. 5. LUT verification using planar plane. Five postures are tested, and
each is placed at a different position inside the calibrated volume.

stereo, using manually matched pixels) and any
depth (returned from the ToF sensor or refined by
the calibration results).

e Projection Residual Error (PRE) refers to the
average difference between the 2D position of
reference pixels (manually selected) and 3D points
(returned from the ToF sensor or refined by the
calibration results) that are projected back to the
stereo cameras. We treat the Z value of the 3D points
as the depth value.

5.1 The Plane Experiment

In this experiment, a planar board with a checkered pattern
is placed inside the calibrated volume. We test five
postures: orthogonal, tilting forward, tilting backward,
rotating left, and rotating right (see Fig. 5). Tilting and
rotating are around 20 degrees (a rough estimation).

We show results from one of the postures in Fig. 6. We can
see that both the 3D locations and the PRE from LUT-
refinement results are much closer to the ground truth.
Numerically, the depth error from selected samples of rigid
transformation (after 7;,) is around 20 mm, while that is only
4 mm after LUT correction. We can also see the PRE from T},
is almost 30 percent larger than that of LUT correction.

All of the numerical results of these five tests are
presented in Table 1. Numbers in bold are after LUT
refinement. PRE is small for the ToF sensor because of low
resolution. This table also shows points after LUT-refine-
ment have much smaller error, which is approximately one
third of that original value.

5.2 The Box Experiment

In this experiment, we place a box inside the calibration
volume and reconstruct the orthogonal patches. Our
motivation is to show that the orthogonal relationship is
better preserved by our LUT-refinement than the rigid
transformation approach.

Similar to the plane test, we read out 3D points from the
ToF sensor, compute 73, transformed points, and refine
them using LUT. In Fig. 7, we compare the angles returned
by each method and reproject them into the left view. The
angle between two patches is estimated, using a plane
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Fig. 6. Qualitative comparison of 3D points and PRE from the one of the
planar tests. The ToF depth error is the average depth difference of the
ToF data transformed by T;,. LUT refined error is similarly computed
after using photometric and geometric LUTs. The unit of PRE is pixel.
(a) Comparison of 3D points in world CS. (b) ToF PRE. (c) LUT
refinement PRE.

fitting approach. We can see that our LUT-refinement
method preserves the angle well.

Based on the above tests, we verify that our calibration
LUT improves the depth accuracy. To further improve the
reconstruction quality, we present our fusion technique in
the next section.

6 SENSOR FusiON

The current state of the art in stereo matching is achieved by
global optimization algorithms (e.g., [35], [36], [37]). These
methods formulate stereo matching as a maximum a
posterior Markov Random Fields (MAP-MRF) problem. In
detail, we denote X = z; as hidden variables, corresponding
to the disparities of each pixel and Y =y; as observed
variables, corresponding to the intensity-based matching
cost at specific disparity. Solving the stereo matching
problem is equivalent to maximize the following posterior
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Fig. 7. Results from orthogonal patches. The angle from LUT-refinement
is 91 degrees. The angle from T}, transformation is 97 degrees. We can
also see that the overlap of the fitted depth plane after using LUT-
refinement is closer to the real orthogonal angle in the scene.

PXIY) o [] fatwim) ] fulaizp), (4)

JEN(i)

where N (i) represents the neighbors of node i, function f; is
the local evidence for node i based on the initial pixel-wise
matching cost (data term), and f; is a symmetric function
that measures the smoothness assumption about the scene
(smoothness term).

One valuable feature of this MAP-MRF formulation is
that it provides a natural way to integrate the information
from multiple sensors. With our ToF sensor, we add
another set of observed variables Z = z;, which corresponds
to the depth value returned by the sensor. The new
posterior can be formulated as

P(X|Y7 Z) x Hfd(xtvyt)fl(xwzt) H fs(xivxj)v (5)
2

JEN(2)

where f,(z;, z) is the additional local evidence based on the
measurement from the ToF sensor.

We choose Loopy Belief Propagation (LBP) to maximize
the negative log-likelihood of P(X|Y,Z)). We also intro-
duce two weighting factors to allow more flexibility for the
data term. That is,

wq - 1og fa(xi, yi) + w, - log fi(xs, zi), (6)

where w; and w, are the weighting factors for stereo and
ToF data terms.

6.1 Configure MAP-MRF to Infer Depth

6.1.1 Data Term from Stereo Matching

The data term derived from stereo matching encodes the
color consistency of pixel correspondences. In our imple-
mentation, pixel-wise matching costs are obtained in a similar
manner as in [39]. In detail, the per-pixel difference is first
computed, using Birchfield and Tomasi’s pixel dissimilarity

TABLE 1

Result of Depth Error and Reprojection Error

PRE Left View (pixel)

PRE Right View (pixel)

(1.82 2.35) (1.85 1.63)

(3.50 2.21) (1.91 1.72)

(3.33 2.68) (1.87 1.64)

(1.68 2.62) (2.44 1.65)

(1.96 2.44) (1.77 1.67)

(4.21 2.23) (2.91 1.65)

(6.24 4.72) (3.75 3.33)

(5.81 4.60) (4.41 3.14)

Posture Depth Error (mm) | PRE Sensor View (pixel)
orthogonal 17.0 (5.3) (0.34 0.36) (0.02 0.04)
left 17.0 (6.1) (0.35 0.28) (0.03 0.06)
right 20.3 (5.0) (0.32 0.35) (0.02 0.05)
forward 19.2 (5.1) (0.39 0.31) (0.02 0.08)
backward 16.3 (4.6) (0.36 0.33) (0.02 0.06)

(2.44 2.48) (1.86 1.69)

(3.12 2.31) (2.10 1.71)
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[40]. An additional adaptive weight aggregation step [41] is
applied to overcome matching ambiguities caused by
occlusion boundaries or sensor noise. This two-step approach
has been shown to be remarkably effective for getting reliable
matching cost in [39].

6.1.2 Data Term from the ToF Sensor

The data term from the ToF sensor encodes the depth
consistency between the stereo and the ToF sensor in world
CS. We use the same technique to compute this term as our
previous work in [42].

We describe the process of computing the ToF term
briefly. From the stereo cameras, for each pixel p in the left
view, we have a set of disparity candidates d.. By
triangulating each matched pair, we get a set of 3D points
in the stereo CS. Then we transform them, using T, to the
world CS. From the ToF sensor, we read the 3D points and
also transform them to the world CS, using T},

By assuming that the true 3D point is one of the points
from the stereo triangulation, we define the cost of the ToF
term as the difference between these two types’ 3D points

fr = min(|$sterea - -TTOF|7 Tl)a (7)

where 71 is set to 300 mm. X, ..., and Xp,r are both
transformed to world CS, using Ty, T}, respectively. Note
that in [38], we used an exponential function to make the
cost smoother. We found that a simple linear function also
works well.

6.1.3 Smoothness Term

The smoothness term encodes a prior assumption that
depth should be piecewise smooth. We use a quadratic
truncation model to describe this term

fs = min{(xg - mj)277—2}7.j € Ns(i)v (8)

where z; and z; are the disparity values of selected pixel :
and its neighboring pixels j; 7 is set to half of the maximum
disparity value.

The occlusion between left and right cameras may cause
visible problems on the boundaries in the disparity map.
We employ a similar approach as [36], where the occlusion
map is estimated by minimizing an MRF-based cost
function for measuring the consistence of occlusion between
left and right cameras.

7 FusIiON BY RELIABILITY

The weighting functions wy; and w, in (6) have to be
carefully selected. This is difficult in practice because both
stereo matching and measurements from the ToF sensor
may not be robust. In this section, we introduce our per-
pixel reliability function that can aid in computing wy and
w, adaptively instead of tuning the parameters as in our
previous work [42]. The per-pixel reliability is represented
by a coefficient that weights the per-pixel cost. Results show
fusion by reliability can correctly describe the unambiguous
characteristic for each method and yield better quality.

7.1 Reliability of Passive Depth

The definition of reliability in stereo matching is simple: The
best depth candidate should have a distinct matching score.
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We intuitively define the matching reliability of pixel p as
how distinctive the best and the second best costs are:

Clst
p 2nd
- c2nd Cp > TC (9)

Ra(p) =
0 otherwise,

where ¢}* and ¢2"" are the best (lowest) and the second best

matching costs of p. T, is a small threshold to avoid division
by zeros. Ry(p) € [0,1] can be used to model ambiguous
matching by poor SNR [43].

7.2 Reliability of Active Depth

Our motivation for computing the reliability of the ToF
sensor is to incorporate its robustness in the fusion
framework. We can use a similar approach as to the first
and second costs to define the reliability of the ToF sensor
as in our previous experiment [38]. However, in this
paper, we would like to explore the essential reliability of
the ToF sensor.

We first introduce our result that the the reliability of
depth measurements from the ToF sensor depends on the
lightness that the ToF sensor can receive (we use the returned
amplitude from the ToF sensor to measure the lightness). We
then discuss the two main factors that cause fall off in
lightness: object reflectance and vignetting, followed by
the introduction to our method to model the reliability of the
ToF sensor.

Object Reflectance. As we already demonstrated in the
calibration section, darker objects tend to absorb photons,
which reduce the amplitude and the brightness the ToF
sensor returned.

Vignetting. In addition to object reflectance, vignetting
also attenuates the brightness, particularly near the image
edge, and affects the accuracy of depth estimation [44].
Several previous works in the literature have also reported
that circular errors from the imperfect sinusoidal modula-
tion of the transmitted near infrared light [15], [25] cause
lightness loss from the image center to the image edge.

From a real scene, object reflectance and vignetting are
difficult to measure independently. Therefore, directly
biased evaluation of depth estimation can be problematic.
In this paper, we provide an approach by modeling a
reliability function using amplitude, which is a good metric
to measure how much light is returned.

To fit the reliability function, we do a statistical
analysis of how object reflectance and vignetting can
change the amplitude. We set the integration time to 40,
and for each experiment, we collect 1,000 measurements
from the ToF sensor.

Verification. We first place a white board in the scene.
Fig. 8a shows the amplitude. We downsample the original
16-bit amplitude, using an intensity image which is 8-bit.
The further an object is from the center, the greater the
reduction in brightness. We also plot the per-pixel standard
deviation (PPSD) (in color plot) of the depth. From the
PPSD, we find that the further from the center, the higher the
deviation is, which shows that the accuracy of depth
measurement from the ToF sensor decreases with the falloff
of the amplitude.



ZHU ET AL.: RELIABILITY FUSION OF TIME-OF-FLIGHT DEPTH AND STEREO GEOMETRY FOR HIGH QUALITY DEPTH MAPS

c
S
s
z 0.0
o
B
§ 0.024
=4
<
o

0,03

200

N 80
Y 0 X
Intensity image Per-pixel Standard Deviation of Depth
(a)
0~

| -4
o
0.05-
H
o
B
8 01
4
©
®

0,184 -

208 N o 60

100 Sl oy 100
¥ 00 X

Intensity image

Per-pixel Standard Deviation of Depth

(b)

Fig. 8. Example of vignetting and object reflectance from a planar object.
Vignetting and object reflectance tests from a planar object. Images in
(a) and (b) denote the amplitude returned from the ToF sensor. The
image in (a) is captured while the ToF sensor faces a white planar
board. We can see the vignetting effects with darker pixels near the
image boundary. The image in (b) is captured while the ToF sensor
faces a planar board with intensity values reduced from left to right. We
can see the image in (b) shows a combination of vignetting and intensity
changing effects. We also plot the standard deviation from 1,000
measurements in the color plot for both tests. We can see the std is
larger when the amplitude returned is less. (a) Object in white. (b) Object
with various reflectance.

In the second experiment, we measure the PPSD from a
planar object with various reflectances (a planar board
painted with gradually changed intensity values). In Fig. 8b,
one can see small PPSDs for higher object reflectance and
large PPSDs for lower object reflectance.

Statistical Analysis. We sample many different object
reflectances from a number of scenes and collect all of the
PPSDs, which are shown in Fig. 9a. The PPSDs are
normalized into [0,1]. We can see the standard deviation
of depth measurement is inversely proportional to the
amplitude. Based on this observation, we assume that
amplitude is proportional to the ToF sensor’s reliability and
we calibrate the reliability using the inverse proportional to
the standard deviation of the amplitude.

We collect all possible amplitudes and divide them into
256 bins. We then fit a normal distribution to the depth
deviations in each bin, and the inverse of the normalized
standard deviation is used to model the reliability:"

R7(p) = 1/07

where p denotes the bin that a specified pixel is located
based on its amplitude. o is the fitted standard deviation of

(10)

1. Note that the numerical results in Table 1 were obtained with a
method differing slightly from (10) (originally, we used an exponential
function to smooth the reliability) and (10) was observed to give almost the
same results but in a simple way.
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Fig. 9. Our reliability function based on amplitudes. (a) shows the
relationship between amplitudes and standard deviation of depth
measurement. (b) shows the experimental curve model used in this
paper. (a) Standard deviation of depth measurement. (b) Reliability
model using curve function.

amplitudes from a normal distribution with 0.95 percent
confidence intervals.

In practice, we are not able to sample all of the
variations as variations such as amplitude values are very
small or high. Instead, we plot all available amplitudes
and fit them, using a curve function. We found that a
cubic curve (plotted in blue in Fig. 9b) can experimentally
approximate the reliability samples well.

Given the reliability curve function, we compute the per-
pixel reliability R,(p) for the depth measurements from the
ToF sensor. Finally, given R,;(p) and R,(p), we compute

— _ Ralpi) -
Wi = g5 ke and we=1—wy.

8 EXPERIMENTAL RESULTS

In this section, we evaluate the quality of depth estimation
from traditional stereo matching, the ToF sensor, and our
fusion approach. In all experiments, we use the left view of
the stereo cameras as the reference view.

In order to verify the accuracy of these three methods,
we set up a single structured light scanner to acquire
reference scene depth. Basically, we use a projector to
project a single line sweeping over the scene. The
orientation of the line is roughly orthogonal to the epipolar
line of the cameras. Therefore, the correspondence problem
can be uniquely determined, using the stereo images.
Based on the cameras’ calibration data and projector
resolution (1,024 x 768, we sweep 1,024 lines over the
scene), our structured light scanner is able to achieve very
high accuracy depth maps, which we use as the ground
truth to obtain quantitative results.

We compare our results in three groups: depth maps
from passive stereo and those from the ToF sensor alone,
depth maps from local fusion (without MAP-MRF) and
global fusion (with MAP-MREF), and depth maps from non-
reliability fusion and reliability fusion. In the first set of
comparisons, we demonstrate that depth from passive
stereo and that from active sensors have complementary
characteristics in nature; the second set of comparisons
shows that our global fusion approach can substantially
increase the overall depth accuracy by a three times error
reduction; in the third set of comparisons, we show that our
reliability approach can infer the depth details better.
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simple fusion

reliability fusion

Fig. 10. Depth map from a simple scene with two planetary boards. The first row shows the reference image, our ground truth, and two maps of per-
pixel reliability from passive stereo and the ToF sensor. The second row shows the depth map from local methods. The third row shows the depth
map from global methods. From left to right are: raw depth from the ToF sensor, LUT-refinement depth from the ToF sensor, depth from stereo

matching, depth from S-Fusion, and depth from R-Fusion.

8.1 Definition of Methods
We first introduce the different approaches used in our
experiments.

The distinction of local and global methods originally
stems from stereo vision literature. As defined in the
taxonomy by Scharstein and Szeliski [5], a local method
associates a pixel’s disparity value to the one with the
minimum matching cost, e.g., a local “winner-takes-all”
(WTA) approach. In contrast, a global method typically
makes disparity decision using an energy-minimization
framework, which is formulated as an MAP-MREF solution
(see Section 6) in this paper.

We define local methods to compute the depth maps from
passive stereo and the ToF sensor alone. The former method
is a two-step approach by: 1) calculating the pixel similarity,
and 2) applying an adaptive weight aggregation. The
second method essentially transforms the raw depth values
returned from the ToF sensor to the stereo CS and computes
the disparities.

By setting wy and w, in (6) to different values, we define
the second type of comparison methods. By setting w, to
zero, we obtain global depth results from passive stereo; by
setting wy to zero, we obtain global depth results from the
ToF sensor. We also define a local fusion method by setting
wq =w, = 0.5, and a global fusion method which applies
MAP-MREF from the local fusion method.

Finally, we define the reliability local fusion method and
reliability global fusion method by setting wq and w,, using (9)
and (10), which essentially incorporate a per-pixel weight-
ing function.

In abbreviation, we refer to the method using wy = w, =
0.5 to as Simple Fusion (S-Fusion), the one using per-pixel
reliability as Reliability Fusion (R-Fusion). This is also the
method we expected to obtain the highest accuracy.

8.2 Results on Simple Scenes

We evaluate all methods on a number of scenes. For each
scene, we first use the scanner to obtain the ground truth,
then apply different methods to compute the depth maps.
We first present results from a simple scene with two
planes (scene Plane): One is uniformly colored, the other
is a checkerboard.

As expected (see Fig. 10), the ToF sensor and passive
stereo exhibit complementary characteristics; stereo match-
ing is erroneous in weakly/periodic textured areas while
the ToF sensor obtains unstable depth on boundaries and
dark regions. This unambiguous characteristic is also
present in the reliability maps; the reliability on the
textureless plane (left) from the ToF sensor is higher overall
than that from passive stereo; and passive stereo has a
greater reliability on the rich-texture region (right).

It is also interesting to observe that the sensor’s depth
maps are (in the first and second row) improved after
applying a global optimization step. It is expected that the
depth map from R-Fusion is preferable and more visually
pleasing than that from S-Fusion, especially on textured
regions and around occlusion boundaries. In contrast, as the
reliability map provides knowledge on how to intelligently
weight different nodes in the MRF graph, their information
can be more properly propagated.

It is also notable that global methods overwhelm local
methods in our experiments. Therefore, for the following
experiments, we present only global results.

8.3 Results on Complex Scenes

In this section, we present results from two complex scenes
(scene Teddy and scene Head). Depth inference for these
scenes is challenging because of occlusions and thin
structures. We demonstrate results from the global method
in Fig. 11.
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Fig. 11. Results from two complex scenes. The first row shows the reference image, our ground truth, and two maps of per-pixel reliability from
passive stereo and the ToF sensor. The second rows shows depth maps from global methods. From left to right: raw depth from the ToF sensor,
LUT-refinement depth from the ToF sensor, depth from stereo matching, depth from S-Fusion, and depth from R-Fusion. The third row shows the
gradient of depth samples from one row/column. (a) Scene Teddy. (b) Scene Head.

From the reliability maps, we can see the overall
complementary nature is presented (compare reliability of
pillow in both scenes from both methods). This is consistent
with our assumption. However, the reliability from the ToF
sensor is notable, as it varies with different object materials.

In scene Head, the head region is brighter than the neck
region in the real scene; however, their reliability exhibits
contrary behavior.

We point out that the high intensity in the color image
does not represent high amplitude the ToF sensor returned.
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Fig. 12. Comparison of all methods with ground truth. From left to right: Scenes Plane, Teddy and Head. The first row compares the depth error in
mm, the second row compares the reprojection error in pixels. (a) Scene Plane. (b) Scene Teddy. (c) Scene Head.

We noted that in this case, the amplitude in the neck region
is actually higher than the face region since they are
captured under different lighting conditions. The ToF
sensor uses active IR lights, while the color image is
captured with an IR blocking filter. In addition, we believe
our reliability function is not perfect because the high
reflectance causes unknown behavior, for example, the
neck/head case and the cup case we discussed in the paper.
We also think this is a field that requires further research.

Other interesting reliability behaviors of the ToF sensor
are: The reliability of the wood in scene Teddy is not
uniform; the reliability of the small house in scene Head
changes rapidly (compare the roof and the front side).
Reasons that may account for this are the complex light
redirection and object material. We believe the ToF sensors
in these fields are yet to be explored.

Nevertheless, the improvement from R-Fusion is promis-
ing compared to other methods, such as the regions near the
pillow and the book in scene Teddy and the small house in
scene Head. In addition, R-Fusion provides smoother depth
maps, as we note that the global method using either stereo
or the ToF sensor alone results in incorrect discontinuities;
S-Fusion reduces the depth map’s noise and provides better
results on depth discontinuities. However, it cannot
preserve all of the details, while our R-Fusion demonstrates
better performance.

8.4 Numerical Comparison

The numerical comparison against the ground truth from
these three scenes is presented in Fig. 12 and Table 2. We
compare the mean depth error (in millimeters) and
the mean disparity error (in pixels, the number in italic).
We summarize the results as the following:

1. Both local and global results by LUT are better than
raw sensor output (directly from the ToF sensor).
This again reflects the importance of our calibration
process.

2. Stereo matching does poorly on textureless or
repetitive regions. This can be verified by the error
from scene Plane, which is larger than that of
complex scenes.

3. By comparing numbers in columns of local and
global method, we can see the global method works
well on simple scenes.

4. S-Fusion can reduce the depth error by more than
half, on average, as compared to the raw sensor data
(after rigid transformation).

5. R-Fusion obtains the best result and can reduce the
error by almost 20 percent compared to S-Fusion.

By comparing Table 2 with Table 1, we can see that the

reconstruction accuracy of complex scenes is not as useful
as that of the simple scenes. We believe it is due to complex
lighting, surface reflectance, and texture variations.

8.5 Special Scenes

In this section, we first discuss results from two special
scenes (high reflectance and transparent object). We show
that the fusion approach is less robust in such cases. Second,
we apply our approach to high-speed cameras which return
only gray scale images. This decreases the quality of the
stereo results because color aggregation is not available.
Nevertheless, we show that our fusion approach can still
achieve acceptable results.

8.6 High Reflectance and Transparency
We evaluate global methods with two additional scenes
(scene Cup and scene Book). These two scenes are special
because the former has strong specular/inter-reflection and
the latter has transparent materials. Both of them can distort
the result from a structured light scanner; therefore, they
are not included for numerical evaluation.

We first show the results from scene Cup in Fig. 13. We
can see that the depth map from structured light method is
completely inaccurate on some scan lines. This is because



TABLE 2

Numerical Comparison of Real Scenes
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scene: Plane scene: Teddy scene: Head
Local Global Local Global Local Global
raw sensor 31.7 (2.0) | 293 (1.9) | 53.5(2.7) | 53.97 (2.7) | 35.2 (1.75) | 45.1 (2.4)
LUT-refinement | 49.7 (2.85) | 23.0 (1.2) | 27.0 (1.3) | 28.8 (1.3) | 40.6 (2.0) | 42.1 (2.2)
stereo 412 (24) | 333 (.9 | 36.8 (1.9) | 22.0(1.0) | 355 (1.83) | 285 (1.4)
S-Fusion 28.6 (1.7) | 19.0 (1.0) | 21.6 (1.0) | 17.1(0.8) | 28.7 (1.4) | 24.0 (1.2)
R-Fusion 20.1 (1.2) | 13.0 (0.6) | 18.3 (0.8) | 15.6 (0.7) | 24.1 (1.2) | 20.2 (1.0)
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the dark color projected on the high specular reflection spot
appears to be white, resulting in severe matching errors.
The reliability map from the ToF sensor is not correct in
regions with specular refection presented (see the cup and
the bottle). The output from the ToF sensor are grossly
wrong on the inter-reflection region (right side of the cup in
scene Cup). It is surprising that the global stereo matching
method, which assumes a Lambertian scene, is in fact quite
robust on objects with small specular highlights or inter-
reflections, while both structured light and the active
method failed. Given the inaccurate confidence map from
the ToF sensor, R-Fusion does poorly on estimating the
depth for the cup and the bottle, while S-Fusion can still
obtain acceptable results.

In Fig. 14, we show the results from scene Book. The
depth reported by the ToF sensor is completely inaccurate
on transparent materials. Due to a severe matching error,
stereo matching cannot generate good results. Therefore,
both S-Fusion and R-Fusion failed in this case as the cup is
transparent. Nevertheless, compared with S-Fusion, the
R-Fusion method is better as it returns the shape of the cup
by suppressing the ToF sensor more on transparent regions.

reference image ground truth

raw TOF sensor global stereo

From these two experiments, we observe that the ToF
sensor is very susceptible to high specularity, inter-
reflection, and transparency. This is a direction in which
sensor fusion can be further explored.

8.7 Extended Calibration Volume, High Frequency
Cameras, Grayscale Images and Large Baseline
Stereo

In this section, we present supplementary tests on an

extended calibration volume. The volume is extended to

around 3 m, and we employ the same calibration method
introduced in Section 4 to calibrate the system. We use high
frequency cameras that can only return monochromatic
images. We double the baseline of the stereo in one of the tests.

Our setup in Section 3 uses the cameras with capture
frequency at a speed of 15 FPS, which can return very
decent color images in 1,024 x 768 resolution. Increasing the
capture frequency is useful, as the capture frequency of the

ToF sensor (SR4000, the new version of Swissranger,

reaches 56 FPS at most) is faster than the cameras used in

our test. However, by increasing the capture frequency, the
quality of images is decreased (such as color information is
lost). We present results on low quality color images from

reliability stereo reliability TOF

simple fusion reliability fusion

Fig. 13. Results from scene Cup. Results show that the ToF sensor returns incorrect depth both from specular and inter-reflection regions. S-Fusion
generates acceptable results, while R-Fusion does poorly because per-pixel reliability from the ToF sensor is incorrect.
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T
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Fig. 14. Results from scene Book. None of the approaches can obtain acceptable depth results on the transparent materials (the cup).

reference image stereo

TOF sensor

simple fusion reliability fusion

Fig. 15. Results from low quality color images. We can see that the disparity map from our fusion approach is better than stereo or the ToF sensor
alone. Our R-Fusion achieves the best results by preserving details inside the green box.

middle (TOF)

stereo

simple fusion rellablhty fusion

Fig. 16. Results from large baseline and high-speed cameras. The distance of objects from the setup is around 2.0 m. The first row shows the left,
ToF, and right view of the. scene. The baseline between the two cameras is around 20 cm (original setup is around 10 cm). The capturing speed of
stereo cameras is around 100 FPS. The capturing speed of the ToF sensor is around 12 FPS as we set the integration time to 50.

two high-speed cameras (200 FPS with image resolution of
640 x 480, as we introduced in our previous work [38]).

We display an example and compare results in Fig. 15.
The scene is very simple and contains only one checker-
board pattern. By comparing all of the depth maps from
the right edge on the checkerboard, we see the boundary of
the checker board from R-Fusion is more accurate because
R-Fusion can assign large weights to the ToF sensor on the
region below the green box.

We then show an example with a large baseline. The
stereo cameras capture the scene at a high speed of 100 FPS.
The returned images from stereo cameras are in grayscale.
This makes our color aggregation step in stereo matching
unavailable. Fig. 16 shows our results. We note that the
overall depth map is correct. Due to a large occlusion and
lack of color information, the depth from the stereo is very

poor. By fusing with the ToF sensor, we are still able to
obtain acceptable results.

9 CONCLUSION

In this paper, we present a practical calibration method to
improve the performance of Time-of-Flight (ToF) sensors.
Our method is general and needs no additional equipment
other than a pair of cameras. We use the stereo camera to
generate reference depth values in calibration so that the
sensor can be calibrated for any desired range. Evaluation
shows that our calibrated depth map can achieve an
absolute accuracy of about 5 mm over the range of 1 m.
This improvement is approximately three times better
compared to the raw depth map (after rigid alignment).
We also present a fusion method that is useful in
improving depth quality by maximizing complementary
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information from passive and active depths. The nature of
our approach is based on an accurate per-pixel reliability
calculation for both methods. We show comprehensive
results from different scenes and compare them with state-
of-the-art depth estimation methods such as structured light
method and stereo. Results show that our S-Fusion reduces
the overall error by 50 percent, and our R-Fusion can
further reduce this error by almost 20 percent. Nevertheless,
there are also problematic cases, such as high reflectance
and transparency. For such cases, the complementary
nature of the ToF sensor and stereo is invalid; therefore,
our formulation cannot deal with these problems.

Our fusion approach requires around 20 s to generate a
depth map in 400 x 300 resolution. The main computation
power is used for LBP. Although it is currently not in real
time, several acceleration approaches of LBP using GPU
[45], [46], [47] are already available. We envision extend-
ing our method to a hardware-accelerated approach in the
near future.
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