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Abstract

We present a novel phase unwrapping framework for the
Time-of-Flight sensor that can match the performance of
systems using two modulation frequencies, within a sin-
gle shot. Our framework is based on an interleaved pixel
arrangement, where a pixel measures phase at a differ-
ent modulation frequency from its neighboring pixels. We
demonstrate that: (1) it is practical to capture ToF images
that contain phases from two frequencies in a single shot,
with no loss in signal fidelity; (2) phase unwrapping can be
effectively performed on such an interleaved phase image;
and (3) our method preserves the original spatial resolu-
tion. We find that the output of our framework is compa-
rable to results using two shots under separate modulation
frequencies, and is significantly better than using a single
modulation frequency.

1. Introduction

The standard Time-of-Flight (ToF) sensor detects depth

by measuring the phase offset between sensor and scene, at

a fixed modulation frequency. As such, there is an inher-

ent ambiguity caused by the periodicity of the phase mea-

surement. As a result, the phase measurement produced

by the ToF sensor is “wrapped” into a fixed interval, i.e.,

[0, 2π], such that all phase values corresponding to the set

{Φ|Φ = 2kπ+φ, k ∈ Z} become φ. In terms of depth mea-

surement, all depths are “wrapped” into an interval defined

by the modulation frequency.

To recover the correct ToF measurement, one needs to

“unwrap” the phase image, i.e., find the correct wrapping

number for each pixel. One class of phase unwrapping

methods involve capturing two shots at different modulation

frequencies, and solving for the wrapping number by inves-

tigating the relation between the two measurements at each

pixel. While each pixel could theoretically be solved inde-

pendently, these methods require two shots to solve each

frame, which cuts down the effective frame rate, and intro-

duces inconsistency issues for dynamic scenes due to the

time difference between the two shots. Another class of

phase unwrapping methods works with the available one-

shot image, and uses global optimization guided by factors

other than phase, such as the intensity image. This area is

still work in progress, as the performance is not on par with

the two-shot methods.

Therefore, it would be desirable to combine the strengths

of the two areas, i.e., have a system that preserves the redun-

dancy of phase measurements as in the two-shots methods,

while not requiring additional exposure time.

In this paper, we propose a novel phase unwrapping

framework as an attempt to achieve this goal. We employ a

special pixel arrangement at the capturing sensor, so that

pixels adopting separate modulation frequencies are spa-

tially interleaved. We then develop a new unwrapping al-

gorithm that solves for the number of times each pixel has

been wrapped. With capable hardware, this innovation will

allow us to take advantage of the spatial coherence in the

phase image within a single frame.

Main contributions of this paper include: (1) a novel

pixel arrangement for the ToF sensor such that two dif-

ferent modulation frequencies are interleaved on a sin-

gle phase image; (2) a phase unwrapping algorithm

that produces state-of-the-art unwrapped result using the

frequency-interleaved phase image.

We hope our work could inspire future generations of

ToF cameras that support simultaneous multi-frequency and

customizable pixel arrangement.

2. Related Work

Phase unwrapping is the procedure of recovering the cor-

rect wrapping number for signal given wrapped input. It is

a problem well known in signal processing techniques, such

as synthetic aperture radar (SAR), and magnetic resonance

imaging (MRI) [7].

Phase unwrapping methods can be categorized into

single-shot and multi-shot methods. Single-shot methods

work with available data captured at a single modulation
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frequency by means of global optimization, such as [4], [3],

while multi-shot methods work with data captured at mul-

tiple frequencies to solve for the number of wraps, such

as [14], [5], [8], [6], [2], [11].

In particular, [4] takes into account intensity information

when solving with a single frequency, and is the state-of-

the-art in single-frequency unwrapping methods. [1] is a

single-frequency work and it does not directly target ToF

cameras, yet the graph cuts optimization framework [10]

that it uses could be modified to work with multiple fre-

quencies. The illumination demultiplexing method in [9]

can also be used to capture multiple light sources. Instead

of using custom coded ToF pixels, we use standard ToF pix-

els with interleaved modulation frequencies. As a result, the

exposure time of one frame is entirely used for one depth

measurement, allowing for higher SNR.

Our method organizes the input data such that it can be

captured in a single shot, and then performs unwrapping

following the general guideline of multi-frequency meth-

ods. This idea could be traced back to that of multi-sampled

imaging [12], however unlike traditional pixel arrangement

methods such as the Bayer pattern, our pixel layout does

not cause any loss of resolution: wrapping information is

recovered at every sensor pixel.

3. Framework Design
3.1. Spatial Pixel arrangement

As mentioned in Section 1, to exploit spatial coherence

among pixels, we use an interleaved pixel arrangement, in

which neighboring pixels use different modulation frequen-

cies. A most straightforward layout is a checker pattern,

where all pixels corresponding to the “white” blocks adopt

one modulation frequency, while all pixels corresponding to

the “black” blocks adopt another frequency. As illustrated

in Fig. 1.

Other possible arrangements include row-interleaved (or

column-interleaved) patterns, in which every other row (or

column) take the same modulation frequency. This paper

mainly discusses the checker-style pixel arrangement. The

other two patterns deliver similar performance, as is dis-

cussed in the supplementary material.

3.2. Simultaneous Capturing at Multiple Modula-
tion Frequencies

In an actual hardware implementation of the above

pixel arrangement, there should be two simultaneous light

sources at work, each operating at its own modulation fre-

quency. The sensor should also have pixels operating at ei-

ther frequency. Therefore, it is important to make sure that

the light that reaches the sensor, as a mixture of different

frequencies, does not cause trouble for pixels set to one of

these frequencies.

Frequency A

Frequency B

Figure 1. The checker-style interleaved pixel layout, where each

pixel is surrounded by pixels operating at a different modulation

frequency.

Let us consider a regular case, where light is emitted

from the ToF camera’s active illumination, and reflected

back to a pixel on the camera sensor. Under the sine wave

ToF model, the signal of the emitted light could be written

as

l(t) = I cos(ωlt) + I0, (1)

where ωl is the modulation frequency of the light source.

Under the assumption of Lambertian reflection at a dis-

tance, and the sensor co-locating with the light source, the

return light signal is in the form

g(t) = α cos(ωlt+ φ) + k, (2)

where φ is the phase offset of the reflecting object w.r.t. the

sensor.

The received signal g(t) undergoes a per-pixel modula-

tion with an on-sensor sinusoid function implemented by

periodically shifting charge carriers between the two read-

out nodes. This sinusoid function could be written as

s(t) = cos(ωpt). (3)

The modulated signal for each pixel would be

c(t) = s(t) · g(t)
= cos(ωpt) · (α cos(ωlt+ φ) + k)

= α cos(ωpt) cos(ωlt+ φ) + k cos(ωpt)

=
α

2
cos[(ωp + ωl)t+ φ]+

α

2
cos[(ωp − ωl)t− φ]+

k cos(ωpt). (4)
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Frequency A

Frequency B

ToF
Sensor

Light Source

Figure 2. Illustration of our pixel interleaving design (right), com-

paring with the standard ToF camera (left). Although the two

lights operate simultaneously, a pixel only receives the component

of the reflected light signal that has the same modulation frequency

as itself.

The ToF sensor executes the pixel’s exposure by inte-

grating the modulated signal c(t) over an integration time

T , and the raw phase readout of the ToF pixel would be

p(T ) =

∫ T

0

c(t) dt. (5)

Since T is normally orders of magnitude longer than the

period of any term in Eq. 4, all terms with a non-zero ω will

be nullified. In which case, the phase readout becomes

p(T ) =

{
T · α

2
cos(−φ), if ωp = ωl,

0, if ωp �= ωl,
(6)

where ωp = ωl denotes when the light source’s modula-

tion frequency agrees with the sensor pixel’s modulation

frequency.

Eq. 6 reveals that, for a ToF pixel operating at frequency

ωp, only the portion of the received light that has the same

modulation frequency is effective towards its phase readout,

meaning that having two distinct modulation frequencies do

not cause interference for the ToF pixels.

It should be emphasized, however, that for the analysis

from Eq. 5 to Eq. 6 to be true, ωp and ωl need to be suf-

ficiently apart (see “orders of magnitude longer”). In our

experiments, |ωp − ωl| is in the megahertz range, and T is

in the millisecond range, which ensures the appropriateness

of Eq. 6.

3.3. Practical Verification of Simultaneous Captur-
ing at Separate Modulation Frequencies

Experiments are conducted to verify our theoretical con-

clusion in Section 3.2 that separate modulation frequencies

do not interfere with each other. We set a SwissRanger

Figure 3. Our experimental setup and scene to verify multi-

frequency interference performance.

ToF camera to 29MHz, and use another identical Swiss-

Ranger camera as external illumination at 31MHz, as shown

in Fig. 3. The scene is a simple flat wall, close enough

(2 ∼ 3m) so that the entire frame is within wrapping limit

for either frequency.

Consider the two scenarios, 1) capture at 29MHz with

the external illumination at 31MHz turned off, and 2) cap-

ture with the external illumination turned on. We compare

the difference between 1) and 2) against the difference be-

tween two captures under 1), to see how the external illu-

mination affects the captured range data. For each capture,

we take 100 frames to minimize noise, as well as to check

that there are no temporal oscillations common to simulta-

neous captures at identical frequencies, as will be discussed

below.

We take three separate captures, R1, R2 and R3. R1 and

R2 are taken by the 29MHz camera alone, R3 is taken by

the 29MHz camera, with the 31MHz light also turned on.

As illustrated in Fig. 4, the extra 31MHz light makes lit-

tle difference in the captured range map, as the difference of

measurement with the extra light on is very similar to that

with the extra light off.

We also compare the behaviors of measurements over

time, for both scenarios. We first calculate

M21(i, j) = mean(|R2(i, j, t)−R1(i, j, t)|), (7)

M31(i, j) = mean(|R3(i, j, t)−R1(i, j, t)|), (8)

S21(i, j) =
std(R2(i, j, t))

std(R1(i, j, t))
, (9)

S31(i, j) =
std(R3(i, j, t))

std(R1(i, j, t))
, (10)

for each pixel, where t is the frame index, then compare

mean(M), std(M), mean(S) and std(S) between the two

scenarios. The purpose of comparing the standard devia-

tions is to detect temporal oscillations, as any oscillation
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(a) Intensity of R1 (c) |R2 −R1| in mm,

29MHz only

�� �� �� �� ��� ��� ��� ���

�

��

���

��� �	��

����

����

����

�
��

����

����

�� �� �� �� ��� ��� ��� ���

�

��

���

���
�

��

��

	�

��

��

��


�

(b) R1 in mm, (d) |R3 −R1| in mm,

29MHz only 29MHz and 31MHz lights

Figure 4. Range differences between shots. (a) and (b) are refer-

ence data captured with the external 31MHz light off, (c) shows

the difference between two captures both with the external light

off, (d) shows the difference between one capture with the exter-

nal light off, and another with the external light on. All range

images are averaged over 100 frames.

(s, t) (2, 1) (3, 1)

mean(Mst(i, j)) 1.8063mm 2.0150mm
std(Mst(i, j)) 3.1436mm 3.1492mm
mean(Sst(i, j)) 1.0060 1.0802
std(Sst(i, j)) 0.1045 0.1163

Table 1. Quantitative evaluation on the presence of an external

light ((s, t) = (3, 1)) vs. no external light ((s, t) = (2, 1)). s
and t denote different captures as previously defined. The two

scenarios have very similar noise performance.

will make the distribution of measurements spread out more

than default. Table 1 lists quantitative comparisons. It can

be observed that interference from another light source at

a different frequency is fully rejected in practical terms.

0.2mm more noise at a range of over 2m is completely neg-

ligible. There is also no visible temporal oscillation, as the

spread of measurements over time with the external light on

is very close to that with the external light turned off.

3.4. The Phase Unwrapping Algorithm

Given the phase readout from the interleaved sensor pix-

els, our novel phase unwrapping algorithm can be applied.

The general idea is to first generate an approximate depth

map from the interleaved phase image / depth map, then

Input Depth Map

Extract +
Interpolation

N
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So

lu
tio

n

Freq. A + B Freq. A Freq. B

Approximate Wrap-
state Map with Noise
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Refined Depth Map

Figure 5. Flow chart of our phase unwrapping algorithm.

use it as a guiding term in the global optimization stage, to

obtain a refined result. The main insight of our algorithm

is that stable areas in the approximate depth map provide

useful cues for the final solution, and that we can rely on

global optimization to bridge the unstable areas using co-

herence from the input depth map.

3.4.1 Initial Solution

First, we extract the two sets of pixel depths from the raw

depth map d, grouped by their operating modulation fre-

quency. Each set of pixel depths constitute an incomplete

depth map. Holes are left where pixels of the other fre-

quency used to be at.

We now fill the holes in the incomplete depth maps by

interpolation. This will generate two depth maps, d1 and

d2, which for the time being we consider independent, akin

to those captured consecutively at two different frequencies.

In the next step, we naively solve for phase unwrapping.

The interpolated phase images are converted to depth maps,

according to the following assumption

{
d1 = D mod r1,

d2 = D mod r2,
(11)

where r1 and r2 are the depth wrapping ranges determined

by the corresponding modulation frequency, and D is the

unwrapped depth map. In the solver, Eq. 11 is rewritten as

D = k1 · r1 + d1 = k2 · r2 + d2, (12)
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where D, and the wrap-state maps, k1 and k2, are un-

knowns. The equation is solved using the method of [8].

The wrap-state map records the number of wraps for all pix-

els. k1 and k2 are then assembled into a global k0, accord-

ing to the pixel arrangement pattern.

This initial method works reasonably well for relatively

smooth regions, where no wrappings, natural discontinu-

ities, or high noises occur. However, at those difficult areas

this method fails, because the interpolated depth values no

longer satisfy the assumption of Eq. 11. As a result, false

values appear as high spikes in the wrap-state maps and the

unwrapped depth map.

3.4.2 Median Filtering

At this stage, a median filter is applied to k1 and k2 to re-

move lone spikes and produce a smoothed version, ks1 and

ks2. We use a 5× 5 filter in our experiments. After this step,

ks1 and ks2 are reassembled pixel-wise into a single wrap-

state map ks0.

In our algorithm, pixels where ks0 �= k0 are considered

unstable, and their neighborhood areas are masked out in

a stability mask M . The size of the neighborhood can be

empirically determined. We use 5× 5 in our experiments.

At this point, we produce a partial depth map ds by the

following

ds = d+ ks0 · r, (13)

where r is assembled from r1 and r2 according to the pixel

arrangement pattern. Note that ds is only useful where pix-

els are unmasked in M .

3.4.3 Global Optimization

We modify the graph cuts procedure in [1] to globally refine

the wrap-state map. The energy function is defined as

E(k|d, r, ds,M) = Es(k|d, r)+λEd(k|d, r, ds,M), (14)

with smoothness term

Es(k|d, r) =
∑
i,j

(
wh

i,j · V
(
2πΔDh

i,j

ri,j

)
+

wv
i,j · V

(
2πΔDv

i,j

ri,j

))
, (15)

and data term

Ed(k|d, r, ds,M) =
∑
i,j

Mi,j · |ds − (di,j + ki,j · ri,j)| ,

(16)

(a) Input Depth (c) Naive Solution

(b) Detail in (a) (d) Final Result

Figure 6. Illustration of data at different stages in our algorithm.

where k = {ki,j ∈ Z} is our solution wrap-state map. λ is

a balancing factor between the two terms that can be deter-

mined empirically.

Es(k|d, r) has been adapted to accommodate our pixel

arrangement. ΔDh and ΔDv denote pixel distance differ-

ences where{
ΔDh

i,j = (di,j − di,j−1) + (ki,j · ri,j − ki,j−1 · ri,j−1) ,

ΔDv
i,j = (di,j − di−1,j) + (ki,j · ri,j − ki−1,j · ri−1,j) ,

(17)

and the clique potential V is defined as

V (x) =

{
θ−1.9x2, if |x| � θ.

|x|0.1 , if |x| > θ.
(18)

We find in our experiments that θ = 2.5π yields good

results.

The optional wh and wv convey discontinuity informa-

tion, where lower values suggest more discontinuity and

higher values otherwise. One may use the normalized di-

rectional gradient maps of the intensity image as the dis-

continuity maps. No discontinuity maps are used in our ex-

periments.

The refined depth map D is given by

D = d+ k · r. (19)

Fig. 6 shows the input data, intermediate depth map after

naive solution, and final result, for a sample scene.

In summary, the above algorithm recovers the wrapping

number of all pixels, i.e., how many times the depth value

has gone over the wrapping limit. To this end, we interpo-

late the initial interleaved (and incomplete) depth maps to

generate correct results for smooth areas, and use median

filter to find unstable areas that need special attention (i.e.,

673673673671671



global optimization). The median filter and the global op-

timization steps do not smooth the data; they are used to

bridge the unstable areas by exploiting coherence from the

input depth map. Finally, as Eq. 19 indicates, there is no

loss in spatial resolution.

4. Experiments
In our experiments we use the SwissRanger [13] SR-

4000 ToF camera for data collection. Because we do not

have the actual sensor that can simultaneously capture at

two modulation frequencies, we capture two real frames,

then interleave the pixels according to our pixel arrange-

ment. Since separate modulation frequencies do not inter-

fere with each other, as demonstrated in Section 3.3, our

data can be considered identical in quality to data captured

by the actual hardware.

For our captures we use the frequency combination of

29MHz and 31MHz. Within the frequencies available to

the camera, these are the largest co-prime pair that are not

so far from each other as to behave discernibly different in

noise performance. We also discuss other frequency pairs

in the supplementary material.

We demonstrate the performance of our phase unwrap-

ping framework on scenes captured in an indoor environ-

ment. Additionally, we use the dataset in [4] to quantita-

tively verify our method, as well as compare with the state-

of-the-art algorithm in single-shot phase unwrapping. Fur-

thermore, we compare our results with conventional multi-

frequency phase unwrapping, which uses two modulation

frequencies in the form of two separate frames.

4.1. Single-Frequency Unwrapping

Single-frequency unwrapping is performed using the

method in [4]. Source code and the associated dataset are

provided by the author. For our data, we use the phase im-

ages captured at the modulation frequency of 31MHz.

4.2. Conventional Multi-Frequency Unwrapping

We implemented a two-frequency unwrapping algorithm

that globally optimizes the discontinuity term and frequency

term as described in [5]. We used graph cuts as the op-

timization framework. To ensure performance in the pres-

ence of many discontinuities, we have also incorporated our

data term, as described in Equation 16, into the algorithm.

5. Results
Figures 7∼9 showcase the performance of our unwrap-

ping framework with respect to conventional two-frequency

unwrapping and single-frequency unwrapping, using our

data. From the simplest scene in Fig. 7 to the more com-

plex scenes that follow, our method achieves results that sig-

nificantly outperform the state-of-the-art single-frequency

Category I II III

Number of scenes 5 9 31

Number of phase wraps 1 2 3

Percent correct (1-freq.) 99.4% 91.4% 83.3%

Percent correct (Ours) 99.9% 99.8% 97.7%

Table 2. Quantitative evaluation on the dataset of [4]. Wrap count

maps generated by [4] and our method are compared for the per-

centage of correct pixels. An unwrapped pixel is considered cor-

rect if its wrap count is equal to the wrap count of the same pixel

in the ground truth.

unwrapping algorithm, and are extremely close to results

of conventional multi-frequency unwrapping. This is not

surprising, as we manage to obtain a better initial estima-

tion by exploiting spatial coherence in our rearranged pix-

els, and thus making the global optimization better condi-

tioned. This is not possible with the single-frequency so-

lution. We continue to observe that the single-frequency

method is sensitive to the choice of parameters and illu-

mination calibration, whereas our method requires no in-

tensity calibration, and the same parameter settings can be

applied across multiple images, even data captured by dif-

ferent cameras, with no apparent ill effect. Also, the virtu-

ally non-existent performance gap with conventional multi-

frequency unwrapping demonstrates that, just as the multi-

frequency method is theoretically capable of solving for

each pixel independently, our method is practically capa-

ble of extracting coarse-scale information (i.e., wrapping)

through careful arrangement of fine-scale information (i.e.,

interleaving different modulation frequencies).

Table 2 lists the performance comparisons on the dataset

from [4] in terms of the percentage of correctly unwrapped

pixels. Notice the performance drop of the single-frequency

method at higher wrap numbers, as the algorithm cannot

keep up with scene complexity. In contrast, given the com-

bination of the guidance of depth knowledge in stable areas

and continuity constraints in unstable areas, there is no sig-

nificant performance deterioration with our algorithm. A

sample scene where both algorithms are compared w.r.t.

ground truth is shown in Fig. 10.

6. Conclusion
In this paper, we propose a novel single-shot phase un-

wrapping framework for the ToF camera. We introduce a

special pixel arrangement, where spatially interleaved pix-

els capture simultaneously at different modulation frequen-

cies. We have proved that having two modulation frequen-

cies on the same sensor does not cause interference as long

as the frequencies are sufficiently apart. In our unwrapping

algorithm, interpolating the partial depth maps provides

good guesses in smooth areas, and the continuity constraint

in the global optimization helps maintain performance in ar-
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(a) Intensity Image (c) 1-freq. Input Depth (e) Our Input Depth

(b) Conventional 2-freq. Result (d) 1-freq. Result (f) Our Result

Figure 7. Our scene #1. From (a) to (f) are: (a) Intensity image; (b) Reference unwrapping result, using two frequencies, two frames; (c)

Raw depth map, single frequency; (d) Single frequency unwrapping solution from (c); (e) Our interleaved depth map, assembled from two

raw depth maps; (f) Solution of our unwrapping algorithm. Lighter shades imply greater distance in the depth maps. 99.98% of all pixels

in (b) and (f) have the same wrap count.

(a) Intensity Image (c) 1-freq. Input Depth (e) Our Input Depth

(b) Conventional 2-freq. Result (d) 1-freq. Result (f) Our Result

Figure 8. Our scene #2. From (a) to (f) are: (a) Intensity image; (b) Reference unwrapping result, using two frequencies, two frames; (c)

Raw depth map, single frequency; (d) Single frequency unwrapping solution from (c); (e) Our interleaved depth map, assembled from two

raw depth maps; (f) Solution of our unwrapping algorithm. Lighter shades imply greater distance in the depth maps. 99.94% of all pixels

in (b) and (f) have the same wrap count.

eas with difficulties such as wraps, discontinuities, and high noise. We demonstrate that our method achieves compara-
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(a) Intensity Image (c) 1-freq. Input Depth (e) Our Input Depth

(b) Conventional 2-freq. Result (d) 1-freq. Result (f) Our Result

Figure 9. Our scene #3. From (a) to (f) are: (a) Intensity image; (b) Reference unwrapping result, using two frequencies, two frames; (c)

Raw depth map, single frequency; (d) Single frequency unwrapping solution from (c); (e) Our interleaved depth map, assembled from two

raw depth maps; (f) Solution of our unwrapping algorithm. Lighter shades imply greater distance in the depth maps. 99.96% of all pixels

in (b) and (f) have the same wrap count.

(a) Intensity Image (c) 1-freq. Input Depth (e) Our Input Depth

(b) Ground Truth (d) 1-freq. Result (f) Our Result

Figure 10. Scene #9 from the dataset in [4]. From (a) to (f) are: (a) Intensity image; (b) Ground truth depth map in the dataset; (c) Raw,

single frequency depth map; (d) Single frequency unwrapping solution of (c); (e) Our interleaved depth map, assembled from two raw

depth maps; (f) Solution of (e) using our unwrapping algorithm. Lighter shades imply greater distance in the depth maps. The ratio of

correctly unwrapped pixels is 99.83% in our method v.s. 80.59% in the single-frequency unwrapping method.

ble performance as the conventional two-shot unwrapping

algorithm, and significantly outperforms the state-of-the-art

in single-shot unwrapping methods.
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