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ABSTRACT

This poster describes an alternative approach to handling
the best document selection problem. Best document selec-
tion is a common problem with many real world applica-
tions, but is not a well studied by itself; a simple solution
would be to treat it as a ranking problem and to use existing
ranking algorithms to rank all documents. We could then
select only the first element of the sorted list. However,
because ranking models optimize for all ranks, the model
may sacrifice accuracy of the top rank for the sake of overall
accuracy. This is an unnecessary trade-off.

We begin by first defining an appropriate objective func-
tion for the domain, then create a boosting algorithm that
explicitly targets this function. Based on experiments on a
benchmark retrieval data set and Digg.com news comment-
ing data set, we find that even a simple algorithm built for
this specific problem gives better results than baseline algo-
rithms that were designed for the more complicated ranking
tasks.

1. INTRODUCTION

Selecting the best document from a set (i.e. Best docu-
ment selection) is a common problem with many real world
applications. On a web search engine like Google, a widely
used functionality is the “I'm feeling lucky” button that leads
user directly to the highest ranked URL. On a content web
site like nytimes.com, a single ad needs to be selected and
displayed on the banner for each visitor. On a news com-
menting web site like Digg.com, one task is to promote one
comment onto a highly-visible sidebar to entice visitors to
participate in the discussion.

One method is through community feedback, but this is
not always enough. While the community on Digg.com may
vote for and against comments - ideally so the best comment
will be elected as such, we observe that vote density is highly
correlated with the comment’s default sort position (Fig 1).
Moreover, users are more likely to vote up than down and
comments off the first page receive little attention (Fig. 2).
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Figure 1: Promoting content by community input is
not always enough; while the site’s community may
vote up or down on content, vote density is heavily
skewed towards the most exposed.
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Best document selection is not a well studied problem by
itself. One may think we can just cast it as a binary classi-
fication problem [1]. However, this approach lacks the abil-
ity to distinguish between multivariate levels of quality of
the information. Another simple solution is just treat it as
a ranking problem and use existing ranking algorithms to
rank all documents (e.g. [5, 10], etc.). Then we can select
only the first element from the sorted list. However, because
ranking models optimize for all ranks, the model may sacri-
fice accuracy of the top rank for the sake of overall accuracy.
This is an unnecessary trade-off.

We describe an alternative approach to handle the best
document selection problem. We do this by first defining an
appropriate objective function for the domain, then create a
boosting algorithm that explicitly targets this function. Be-
cause of the comparative simplicity of the objective function
and the special characteristics of the best document selection
problem, we can use a stronger and tighter approximation to
optimize the objective function than existing approximated
ranking solutions. Based on experiments on a benchmark
retrieval data set and Digg.com news commenting data set,
we find that even a simple algorithm built for this specific
problem gives better results than baseline algorithms that
were designed for the more complicated ranking tasks.

1.1 Redated Work

Reputation Systems. Prior work has been done for
reputation systems on social sites, where-in users, not con-
tent, is graded or ranked by quality. Reputation systems
can be seen as ranking models for users - indeed, many ap-
proaches are inspired by existing ranking models. Ideally,
high-quality users consistently generate high-quality con-
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Figure 2: The community can vet for quality com-
ments by either voting up or down on them. How-
ever, the means are correlated with the comment’s
default position, not necessarily with quality. Also,
the second page receives little exposure or voters.

tent, but reputation systems may not be ideal for all user
content-driven sites. For example, in the scenario given in
the Background section, using a reputation system as a ba-
sis for selecting comments would to lead to disastrous re-
sults; the top-ranked user could simply dominate all pro-
moted comments and over time lead to promoted comments
coming from the same subset of active users.

Some algorithms treat site activity, including other forms
of reputation management (e.g. user feedback systems), as
indicative of inter-user relationships. These relationships
can then be used to induce a graph. Guha et al. [7] explore
trust propagation with a series of graph-based algorithms.
Again, site activity is used to create a set of relationships be-
tween users - in this case, the relationship is whether an user
trusts or distrusts another user. Since not all relationships
can be always observed from site feedback, it is the job of
each algorithm to take in an incomplete set of relationships
and to infer the remaining unknown relationships. These re-
lationships can be used to find bodies of high-quality users
(such as the users trusted by most of the population pool).

Approaches inspired by PageRank [16] and HITS [14] are
also used. Zhang et al. [25] use a PageRank-like algorithm to
rank Java expertise amongst members of a Java Question-
Answer forum, again by observing site activity to deduce re-
lationships between users. Jurczyk and Agichtein [12] have
applied the HITS algorithm [14] to find high-quality users
for general Question-Answer sites. Later, Agichtein et al. [1]
tackle the same domain, now casting the problem as a bi-
nary classification problem; the authors use boosting trees to
classify between good answers and bad ones (and hence not
a reputation system). However, the bulk of the work, which
uses features applicable only to Question-Answer sites, re-
mains domain restricted.

Machine-learned Ranking. Ranking models can also
be used for content promotion. Ranking models seek to
order documents by relevance, quality, or desirability. We
focus here on supervised learning approaches.

RankBoost [5] is a pair-wise boosting ranker that com-
bines a series of weak pair-wise rankers into a strong one.
As such, documents are treated as pairs and the goal is to
classify the better (that is, larger label) of each pair, gener-
ating a relative ordering as a result. Owing to AdaBoost’s
re-weighing mechanic, at the top of each iteration Rank-
Boost increases the weights of mis-classified pairs and de-

creases weights of correctly ordered pairs. A weak classifier
that prioritizes correctly classifying frequently mis-classified
pairs is then trained. In [19], Rudin and Schapire prove that
AdaBoost is as good as RankBoost in ranking tasks.

FRank [4] (Fidelity Rank) is based on RankNet [2] and
uses a loss function called Fidelity loss. The name derives
itself from the quantum fidelity metric used in physics defin-
ing the distance between two quantum states. If fidelity of
two states is close to one, then the states are close and near
zero means the states are far apart. The concept is used here
as the “fidelity” of two distributions; near one means the two
distributions are nearly identical and so on. With this, the
authors induce a distribution model over the relative order-
ing of documents (a pair-wise model) using training labels
and the goal of the algorithm is to build a classifier, via
boosting, whose induced distribution is close to distribution
induced from training labels. FRank, as such, does not op-
timize over NDCG.

AdaRank [8] is a list-wise boosting algorithm which em-
beds ranking measures (NDCG, MAP, etc.) in its update

computations. Any arbitrary measure may be used by AdaRank,

including NDCG@1, yet the algorithm does not directly op-
timize any measure but rather uses them heuristically.

NDCG_boost [23] is another list-wise boosting algorithm
which makes the point of basing its objective function off
of the NDCG measure itself. This results in an objective
function that is a relaxed and approximated lower bound
of NDCG. To smooth out the step-wise nature of NDCG,
the authors map predictions to a probability model based,
roughly, on the pair-wise difference of document scores. At
each stage the algorithm generates a new set of not only
weights but binary labels as well; as such, the label of a
document may change from iteration to iteration and weak
learners are restricted to binary classifiers. We use a similar
re-labeling approach here, although we do not use the same
relaxation and approximation approach.

Ranking algorithms seek to optimize the overall ordering
of queries, not the top-ranked item. Because we seek to
optimize the first rank of the ordering, we should instead
make the trade-off of higher first rank accuracy but poorer
overall ranking performance. We also note some ranking
models can be tuned for the top rank; for example, BM25 is
often tuned over NDCG@1 [22]. Other examples lead to the
same limitation of merely tuning to give best possible scores
for the given algorithm as opposed to explicitly optimizing
for it.

Lexical Tests. Finally, lexical ranking functions, such
as tf-idf [21] and similar schemes (e.g. BM25 [18]) can be
used. Other readability tests such as Flesch-Kincaid [13],
SMOG [15]) give a rough assessment of readability. These
simple tests can be used as features for higher level machine
learning algorithms, such as in [1] as well as in this paper.

2. PRELIMINARIES

This section is used to lay out relevant measures used in
our work.

Precision at n (precision@n or p@n) measures the ra-
tio of relevant documents in a sorted list up to a truncation
point. It takes in a set of sorted documents and a binary
judgement on the relevance (e.g. relevant’ or ‘not relevant’)
of each document and outputs:



# of relevant documents in top n ranks 1
- (1)
A special case of P@Qn, Winner Takes All (WTA), is
sometimes used. WTA is equivalent to p@1 - WTA returns
1 if the top ranked document is relevant, 0 otherwise.
Average Precision extends p@n to emphasize the im-
portance of placing relevant documents at the top of the
sorted list. Its equation is:

Pan =

>, Pa@nsxr,
# of relevant documents

AveP = (2)
where r, is the (real or integer) relevance label of the nth
document in the sorted list of documents. For a set of
queries, Mean Average Precision (MAP) is usually re-
ported - as the name suggests it is simply the mean AveP
scores for all queries.

Precision-based measures suffers the issue of only support-
ing binary labels. In practice, there are different grades of
relevance. Normalized Discounted Cumulative Gain
(NDCG) [9], in contrast to MAP, uses integer or real valued
labels. It is defined as:

NDCG = ZZ e

go(1+n) (3)

where Z is a normalization term chosen such that the opti-
mal ranking nets score of 1. Like MAP, NDCG emphasizes
the importance of placing highly relevant documents at the
front of the list. Also like MAP, the mean NDCG score is
usually reported for a set of queries. For the truncated vari-
ant of NDCG, NDCGQ@n, we take the first n documents in
the sorted list in the same fashion as precision@n.

3. OVERVIEW OF THE APPROACH

We now introduce our new measure, Utility (U), and an
algorithm which optimizes for our measure.

3.1 Utility Function

For the task of selecting the best document(s), we mea-
sure the utility as the average ratio between the selected
document’s relevance score and the best one:

1 Tk,s
U=— : A
Q1 2 (@
Q|
|Q| Z r Zrk,i[dk,z‘ is selected) (5)
k,o =

where @) is the set of queries, and 7y s and 7y, are the rele-
vance scores of the selected and optimal documents for the
kth query, respectively. di,; is a ith candidate document for
the kth query, and 7y ; is its relevance score. [] is the Iverson
bracket that returns 1 for when the condition in the bracket
is true, 0 otherwise. This measure is equivalent to WTA,
NDCG@1, and p@1 for binary labels. Otherwise, U can be
seen as a multivariate variant of p@1, MAP@1, and WTA
as well as a non-exponentiated version of NDCGQ1.

3.2 Approximate Objective Function

The utility measure in Equation 4 can not be optimized
easily using gradient descent methods, since it is not dif-
ferentiable. Similar to what people has done for optimiz-
ing ranking measures such as MAP or NDCG, we find an

approximate solution by constructing a new approximate
objective function that is differentiable. To do so, we ap-
proximate the Iverson bracket [] with a softmax function,
which is commonly used in machine learning and statistics,
for mathematical convenience. Thus the approximated ob-
jective function is:
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where H is the model (e.g. learner or hypothesis) to be
learned, which can predict a relevance score for each doc-
ument query pair, j is the index for candidate documents,
Hy ; is the retrieval score of document ¢ for query k es-
timated by hypothesis H. (3 is a coefficient that controls
the tightness of the approximation. Note that the function
approaches the indicator as (8 approaches infinite. l%() is
introduced as a regularizer to control model complexity and
avoid the overfitting problem, and A is a pre-set parameter
that controls the degree of regularization.

3.3 Algorithm: CommentBoost

The approximated objective function in Equation 6 can
be optimized via gradient boosting. We employ a simple
stage-wise gradient technique & la AdaBoost [6]. We call
this algorithm CommentBoost! or CBoost@1. It is a fast,
list-wise boosting algorithm for best document selection. At
each stage t, CBoost@1 chooses the direction w; of steepest
ascent at the current hypotheses vector H. This direction
becomes the basis for target weights and labels when we
train a weak learner. .

After weak hypothesis h is obtained from the newly-trained
learner, the coefficient « is chosen to weigh the learner. At
the final step of the stage, the current hypothesis is updated
as H — H + ah and the next stage begins.

The final algorithm makes real-valued score predictions
as:

H(dy,:) Zatht (dr.q) (7

Sorting each document by hlghest score first produces the
final total ordering of documents.

3.4 Algorithm Derivation

The first step at the start of stage t is to find binary target
labels and weights over the training documents. Given the

!Because one major motivation for this algorithm is to select the
best comment for users to discuss at Digg.com



Initialize: Hy ; = 0 for all document-query pairs.
B > 0 as a temperature parameter.
A > 0 as a regularization parameter.
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Figure 3: The CBoost@1 algorithm
current hypothesis H, the gradient vector at H is
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A weak learner that outputs this vector gives us the greatest
ascent at our objective function. If binary classifiers are used
as weak learners, then this results in setting each label as

Yk = sign(aHLhM(ﬁ)) and weights as wf = abs(aHLk_/\/l(ﬁ)).

However, any weak learners that may output real values (e.g.
point-wise rankers) can be accepted as long as it is well cor-
related with the gradient. We then choose an a such that
M(H + ah) > M(H).

Finding a closed-form solution for « is done by plugging
our update scheme H+ ’ny into M, solving the derivative
for -y, then setting v = 0.2

2Note that by taking %\I/(a,g, 6) = —a+ E%./\/l(@ + %
g)|ﬂ/:07 %\I’(mﬁﬁ) is less than %M(ﬁ + a = h) when
o < 0 and greater than %M(F[—F axh) when a > 0. Thus
there 3¢ € R s.t. (0, h, H) + ¢ = M(H) and ¥(a,h, H) +
c < M(ﬁ + ah) for all a € R, satisfying properties for a
lower bound whose optimal solution improves M (See [20]).
Setting %\I/(a,l_i,[?[) = 0 and solving for a gives us our
closed form solution.
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We now have a complete build of CBoost@1. Its overview
is presented in Fig. 3.

4. EXPERIMENTS

The algorithm is tested on a user comments data set col-
lected from Digg.com, where the best document selection
problem is well motivated. Labels are gathered as the com-
munity’s vote on each comment, and features are gathered
from various lexical tests (e.g. word count, SMOG scores) as
well as user profiles (account age, friend counts, etc.). Fea-
tures are then query-level normalized. We also compared
our algorithm against previously published baselines on the
LETORS.0 data set. For CBoost@1, we use decision stumps
as our weak learners and selected the best parameters as
rated against the validation set. For the purpose of compar-
ison, we report NDCG figures instead of U on the Letor3.0
data set, and we report U on the Digg.com data set.

4.1 Datasets

We use the publicly available LETOR datasets [17]. Not
all datasets are included due to time and space constraints.
A summary of datasets used are as follows:

OHSUMED: The OHSUMED dataset is one of the sets in-
cluded in the LETOR 3.0 package. It contains the rel-
evance labels, pre-computed feature vectors, and con-
tent of medical publication titles and abstracts. In
total, there are 348,556 documents and 106 queries.
Each abstract is labeled as either ‘not relevant’, ‘pos-
sibly relevant’, and ‘definitely relevant’. A mix of low
and high level features, such as tf-idf and BM251, make
up the 25-dimensional feature vector.

+2)3

j=1

TD2003: We use one of the two topic distillation datasets
included in the LETOR package. Contrary to OHSU-
MED, documents are only labeled as either ‘relevant’
or ‘not relevant’ - a binary classification. This makes
their use in ranking limited, but still applicable.
TD2003 is arranged into 5 fold and consist of 49,171
documents total across 50 queries. Each document has
a total of 44 features ranging from tf-idf to ones pro-
posed in recent papers. It is, therefore, also a smaller
set with only 10 queries reserved for testing.

4.2 Basdines

The Letor packages include verified test results for several
algorithms. We give a summary of them here.

)
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Figure 4: Experiment results on benchmark datasets. As desired, our approach (CBoost@1) beats all baselines
at NDCG@1. At higher @n truncation points, Cboost@1 is comparable, but hardly superior, to the baselines.

CBoost@1: The algorithm presented in this paper, tuned
for NDCG@1.

AdaRank-MAP, NDCG: AdaRank incorporates ranking
measures in its optimization. We show results using
both MAP (Mean Reciprocal Rank) and NDCG in
AdaRank. [8]

RankBoost: A pair-wise boosting algorithm introduced by
Freund et al. in 2003. [5]

FRank: FRank uses a loss function called fidelty loss to
relate the similarity of two distributions; one generated
using predicted pair-wise ordering, the second using
the training set. The result is an additive, pair-wise
boosting algorithm. [4]

ListNet: Listwise approach by Microsoft that uses a cross-
entropy loss function. [3]

RankSVM: RankSVM-Struct is a pairwise approach using
Support Vector Machines. [11]

SVMMAP: SVM-MAP is a list-wise support vector ma-
chine algorithm for optimizing Mean Average Preci-
sion (MAP). MAP is another common ranking mea-
sure that is limited to binary labels. For multivariate
label sets, all non-zero labels are assumed to be 1. [24]

On both LETOR data sets, we see across-the-board im-
provements for NDCG@1 with our method. For NDCG@2
and beyond, our algorithm is comparable to the baselines,
however, rarely improving upon them. On the Digg.com
data set, our approach yields a utility score of 0.393, much
better than a tuned svm_rank [10] (0.365).

5. CONCLUSIONSAND FUTURE WORK

This paper studies the problem of best document selection
using a machine learning algorithm. Instead of using exist-
ing ranking algorithms, we propose a boosting algorithm
that optimizes explicitly for the top rank. The strength of
this approach is that it greatly simplifies the required ob-
jective function and allows us to use a tighter, more accu-
rate approximation than before. We also demonstrate that
our algorithm does out-performs a number of baselines on a
benchmark ranking data set LETOR3.0 and a new Digg.com
data set where best document selection problem is well mo-
tivated. As part of future work, we plan on investigating
scalable, distributed best document selection algorithms.
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