
1

Abstract

We present a crowd rendering method that can animate
hundreds of characters in real-time. Existing methods
utilize level-of-detail (LOD) schemes such as geometric
simplification and impostors, which often consume large
amounts of system resources and introduce visible
animation artifacts. Popping artifacts are especially
visible when the camera angle changes. We propose a
system that utilizes non-planar 3D (NP3D) impostors in a
crowd simulation that can be viewed from any perspective
with less computing resources and popping artifacts than
existing methods. For characters near the viewer, high-
resolution 3D meshes are rendered to provide detailed
renderings. Distant characters are rendered using NP3D
impostors, which are basically images projected onto low-
resolution versions of the original high-resolution meshes.
Our system is designed for use in interactive virtual
environments, running on the average home computer
system.

1. Introduction
Creating realistic crowds is an important feature of

many interactive virtual environments. Many games
simulate crowds of people that interact with each other like
real people. These games must animate and render
hundreds of characters in real-time. The camera must
move about the scene seamlessly in order to provide an
immersive experience. At animation studios, artists and

engineers may want to sketch out crowd scenes and change
camera angles interactively for storyboarding and
planning. Interactive crowd simulations would be an
invaluable tool for this purpose. However since a single
character may consist of thousands of polygons, significant
slowdown occurs when more than a hundred characters are
animated on current computer hardware. Simplification
methods are needed to reduce the number of rendered
polygons in order to animate the scene in real-time.

To animate hundreds of characters, current methods
adopt level-of-detail (LOD) schemes. Characters close to
the camera are shown without any compression or
reduction of image quality. However as characters move
farther from the camera, they become smaller and require
less details. Several detail reduction methods have been
explored, such as geometric simplification and image-
based LOD methods. Geometric simplification methods
introduce awkward skeletal animations, and they use large
amounts of memory to store joint reduction data. Image-
based methods must make a tradeoff between introducing
animation popping artifacts and consuming lots of texture
memory storing their images. Because they consume a lot
of resources, they are unusable in large game engines
which reserve most of their GPU resources for other
purposes.

We present a new non-planar 3D (NP3D) impostor
LOD rendering method and demonstrate it in a working
system. NP3D impostors are images projected onto low-
resolution versions of the original high-resolution meshes.
Since the impostor is not a flat image, a single impostor
can be viewed from multiple perspectives. This increases

Original Meshes
0 MB Of Texture Memory

3.7 Frames Per Second

NP3D Impostors
15 MB Of Texture Memory

15 Frames Per Second

2D Impostors
180 MB Of Texture Memory

15 Frames Per Second

Figure 1. Our NP3D impostor method renders crowds using significantly less texture memory than the 2D impostor method, while
maintaining visual quality identical to the original meshes. The impostors shown here were rendered using 64x64 pixel image sizes.
Because NP3D impostors require fewer images, its memory consumption is less than a tenth of the 2D impostor’s consumption.

Crowd Rendering with Non-Planar 3D Impostors

Jerry Yee and James Davis
Department of Computer Science

University of California, Santa Cruz

2

the validity and life of a single impostor which offers
distinct advantages over traditional 2D impostors.

Our system provides an interactive, real-time
simulation. It is capable of animating and rendering
hundreds of characters with minimal artifacts and less
texture memory than other systems. The camera moves
seamlessly about the scene, from directly overhead to a
side profile of the scene, and anywhere in between.
Characters near the camera are rendered using the original
high-resolution 3D meshes. For distant characters, we
render them using NP3D impostors.

The main contribution of our work is a new crowd
rendering method using NP3D impostors that can be
implemented in a real-time crowd animation system. We
demonstrate this method in a simple crowd system and
analyze the improved texture memory usage and frame rate
relative to 2D imposters.

2. Related Works
Geometric simplification is well studied for the purpose

of crowd simulation. Ahn [5][6] reduces motion
complexity by reducing the number of articulated skeletal
joints. However these motion simplifications introduce
visible animation errors as characters move closer to the
camera. Missing joints and limbs become highly visible.
Hoppe [1], O’Sullivan [4] and Wand [8] use mesh
simplification to reduce the number of polygons in their
key frame meshes. Farther characters are replaced with
progressively simpler meshes. However these meshes are
expensive to store and regenerate during continuous crowd
simulation.

Image-based rendering methods, in which geometries
are replaced with 2D impostor images, have also been
investigated, e.g. Aubel [2], O’Sullivan [4], and Dobbyn
[7]. For every camera viewpoint, impostors are pre-
generated thus diverting complex geometric rendering to a
preprocessing step. This enables real-time animation

during the actual simulation, because impostors are
rendered in place of complex meshes. However impostors
are view dependent, so the transition from one impostor to
another is not smooth and distracting popping artifacts
occur. Furthermore the impostor images are stored in GPU
texture memory, which have limited capacities and must be
shared with other textures. Because impostors are
collected for every desired viewpoint, the texture memory
space fills up quickly.

Some advanced impostor methods aim at reducing the
amount of required texture memory. Tecchia [3] explore
texture compression, a more efficient manner to store
impostors. However the storage capacity remains bounded,
and it is not possible to store impostors for every possible
camera viewpoint. Dynamic impostor generation is
explored by Schaufler [12], but this is bounded by the
available processing power. During continuous crowd
simulation, there is a very short time frame in which to
generate these impostors. It is usually not possible to
dynamically generate the impostors without animation lag.
So these systems either reduce the resolution of their
impostors or reduce the total number of impostor images.
The former increases the distance at which the impostors
may replace the 3D geometries. The latter increases the
angular separation between each successive impostor, thus
increasing the occurrence and severity of popping.

View-dependent texture mapping has been used to
create virtual walks through city landscapes. Debevec [9],
Sillion [10], and Decoret [11] describe methods that allow
for multiple views of buildings. They recreate simple
geometric building meshes and then texture map images
onto each face of the buildings. This works well for
buildings having well-defined shapes and planar faces.
However its application to human and animals has not
been explored.

Figure 2. 2D impostors are created by texture mapping an
image of the character onto a quadrilateral projection plane
that faces the camera.

2D Impostors NP3D Impostors

Figure 3. NP3D impostors are created by texture mapping an
image of the character onto a simplified version of the
original mesh.

3

2D Impostors

0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55°

Figure 4. The impostors (shown in blue) are superimposed over the original meshes (shown in red). Screen captures were taken at 5°
increments around the horse. The purple portions show where the impostor and original mesh match up. Notice that the 3D impostors
are always aligned with the original mesh, whereas the 2D impostors are seldom aligned properly, resulting in animation popping
artifacts. All impostors were generated using 30° angular separation and 256x256 pixel texture images.

Impostor Error

NP3D Impostors

3. Methods
Our NP3D method is based on existing impostor

methods. In the following sections, 2D impostors are
reviewed, followed by an explanation of our NP3D
impostor method, rendering, and implementation details.

3.1. 2D Impostors

A 2D impostor is created by rendering one quadrilateral
projection plane that directly faces the camera (i.e., the
plane is perpendicular to the line of sight from the camera
to the plane). The appropriate impostor image is retrieved
from memory and texture mapped onto the projection
plane. See figure 2. During animation, the projection plane
rotates and the impostor image changes as needed for the
current view.

3.2. NP3D Impostors

NP3D impostors are created in much the same manner
as 2D impostors, except that the images are texture
mapped onto a simplified version of the original mesh
instead of a simple quadrilateral. The simplified meshes
contain the entire geometry, including the back-facing
polygons, allowing us to reuse the same mesh in all views.
Like 2D impostors, only the camera-facing side of the
mesh needs to be textured. See figure 3. Also like 2D
impostors, the impostor image changes as needed for the
current view.

The number of impostor images plays a crucial role in
the quality of the animation. For both 2D and NP3D
impostors, images are captured at discrete locations around
the original mesh. These locations are distanced by a
predetermined degree of angular separation. If the angular
separation is too small, there will be a lot of images to
store and memory will fill up. If the angular separation is
too large, popping artifacts will be visible during
animation. These artifacts occur when the desired viewing

angle differs from the captured viewing angle. In figure 4,
a 30° angular separation was used to show the effects of a
large angular separation. The 2D impostors do not align
with the original meshes, resulting in popping during
animation. However the NP3D impostors align perfectly
with the original meshes, resulting in zero popping.

3.3. Rendering

We employ LOD techniques to enable efficient
rendering of each animation frame. The method utilizes
two levels-of-detail to provide realistic, real-time
simulations. For high LOD, the full meshes are displayed.
For low LOD, the NP3D impostors are created and
displayed. To determine the LOD at each time step, we
check the pixel-to-texel ratio of each character. If a
character’s pixel-to-texel ratio is greater than one, we
render the character using high LOD. Otherwise the
character is rendered using low LOD.

To create the NP3D impostors, the appropriate low-
resolution mesh, imposter image, and texture coordinates
are retrieved from memory. The low-resolution mesh is
chosen such that it corresponds to the character’s current
animation frame. While the meshes are view-independent,
the impostor image and texture coordinates are view-
dependent. These are chosen such that they are closest to
the desired viewing angle, taking into consideration the
horse’s rotation and camera viewing angle with respect to
the horse. Once we have the appropriate mesh, image, and
coordinates, the image is texture mapped onto the mesh
using the texture coordinates.

3.4. Implementation

We start with twelve high-resolution 3D horse meshes.
The meshes form a gallop animation sequence for a single
horse. The meshes have approximately 17,000 polygons
each. These meshes were taken from Sumner’s horse data
set [13]. We use these high-resolution meshes as our high

4

LOD data set.
We derive our low LOD data set from the high-

resolution meshes. The low LOD data set consists of low-
resolution meshes, high-detail impostor images, and
texture coordinates that map the impostor images onto the
low-resolution meshes.

To obtain the low-resolution meshes, we simplify the
high-resolution meshes down to 400 polygons each, using
Garland’s quadrics-based mesh simplification tool [14].
These low-resolution meshes serve as the projection

surface for the NP3D impostors.
To obtain the high-detail impostor images, we render

each high-resolution mesh in a fixed-sized frame buffer.
We capture impostor images by longitudinally and
latitudinally rotating the camera around the horse at a
predetermined degree of angular separation. At each
position the frame buffer is read and stored as a texture
image. This gives us our NP3D imposter images, which
are stored in texture memory. We employ NP3D imposters
in order to minimize texture memory consumption, since
the imposter must remain in memory at all times.

To obtain the texture coordinates, we render the low-
resolution meshes in the same fixed-size frame buffer and
with the same camera orientations as in the previous step.
But instead of capturing images, we capture the positions
of each mesh vertex in the frame buffer. This gives us our
texture coordinates, which are used to map the impostor
image onto the low-resolution mesh.

Our system randomly seeds the environment with horses
at various animation time steps. In each time step, we
update each character’s current animation frame and
randomly move the horse forward, left or right. We
employ a simple occupancy grid to prevent collisions
between characters.

4. Results
In figure 1, we display three images from our simulation

system. The left image shows the crowd simulation
without any LOD optimization. The middle image shows
the crowd simulation using the traditional 2D impostor
method. The right image shows the crowd simulation using
our NP3D impostor method. Notice that the NP3D image
quality is identical in all cases, but the texture memory
utilization and frame rate are substantially better using
NP3D impostors. Animated results are provided in the
accompanying video.

We quantified the degree to which NP3D impostors
allow for the reduction of angular separation of texture
images. We initially tried to use an objective measure such
as pixel intensity error, but found that it correlated poorly
with human perceptual error. In order to insure that our
results are perceptually meaningful, a human user
identified the greatest angular separations at which
rendering artifacts are not visible. This was done by
gradually increasing the angular separation, rotating the
character, and visually comparing the impostor to the
original mesh. This experiment was repeated for different
image sizes, ranging from 256x256 down to 8x8 pixels.
See figure 5. Note that NP3D impostors allow for
significantly greater degrees of angular separation at every
size.

Based upon these required angular separations, we
calculated and compared the required amount of texture

Angular Separation Vs. Image Size

0
10
20
30
40
50
60
70

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

Image Size (Pixels)

A
ng

ul
ar

 S
ep

ar
at

io
n

(D
eg

re
es

)

2D Impostors

NP3D Impostors

Figure 5. This graph shows the maximum angular separation
that is allowable to achieve imperceptible error for different
impostor image sizes. At any particular image size, 3D
impostors can achieve this goal with greater angular
separation and therefore less texture images than 2D
impostors.

Texture Memory Vs. Image Size

0.01
0.1

1
10

100
1000

10000
100000

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

Image Size (Pixels)

M
em

or
y

S
iz

e
(M

eg
ab

yt
es

)

2D Impostors

NP3D Impostors

Figure 6. This graph shows the total texture memory size that
is necessary to achieve imperceptible error for each of the
impostor image sizes. As the image size increases, 3D
impostors can achieve this goal with substantially less memory
than 2D impostors.

5

memory for each method. See figure 6. NP3D impostors
consume substantially less memory than 2D impostors
while maintaining the same visual quality. This is possible
because NP3D impostors allow for a larger angular
separation between impostor images and thus require
fewer images. The NP3D method is able to fit all images
into the memory available on current computer systems.
However for 128x128 and 256x256 sized images, the 2D
requirement far exceeds the available memory.

We performed another experiment to see how our NP3D
impostor method compares to simple mesh simplification
LOD techniques without texture mapping. In general mesh
simplification produces noticeably bad renderings when
meshes are over simplified. See figure 7. Our human user

determined the smallest number of polygons at which
rendering artifacts are not visible for each image size. See
figure 8. As the image size increases, more polygons are
necessary to achieve zero rendering artifacts.

Using these determined polygon simplifications, we
created a simulation using mesh simplification. We then
compared the crowd size capabilities of the simulation
using original full meshes only, mesh simplification, 2D
impostors, and NP3D impostors. See figure 9. Overall the
NP3D impostor method surpasses the capability of the
other methods. It is able to animate over 900 characters
with 256x256 sized images. The 2D and NP3D impostor
methods followed each other closely through the 64x64
sized images, but the 2D impostor method could not
render any horses when the image size reaches or exceeds
128x128, because the required memory exceeds the
system’s resources.

To better understand the texture memory constraint, we
reran the previous comparison using only a side-view of
the simulation. This allowed us to strip the system of all
images, except those taken at 0° latitude. This reduced the
texture consumption, so that the 2D impostor simulation
could run. See figure 10. Again the NP3D impostor
method exceeds the capability of the 2D method. The 2D
method drops off starting with the 128x128 image size,
due to texture swapping between the graphics card
memory and main memory.

We tested mesh simplification in two ways. First we
used two levels-of-detail with transition at the same depth
as the imposter methods. With mesh simplification, there
is a tradeoff between using fewer polygons with a distant
transition depth and having a closer transition depth with
more polygons in the simplified mesh. Note that the
optimal tradeoff occurs with the depth plane equivalent to
a 64x64 image size. It is possible to achieve better
performance using multiple levels-of-detail. We created 7
depth zones and used the optimal number of polygons in
each zone. In the figures 9 and 10, the single lone dot
represents the largest crowd size if multiple levels-of-detail
are used with mesh simplification. While this exceeds the
performance of mesh simplification with a single transition
plane, it does not perform as well as NP3D impostors.

We verified that all simulations were limited either by
polygon count or texture memory. In the case of our test
machine, the limits are 30 million polygons per second and
1 GB of texture memory.

5. Conclusions
We demonstrated how to animate and render hundreds

of characters in real-time. We developed an algorithm that
combines high-resolution 3D scanned meshes and
synthesized NP3D impostors into a new rendering
optimization strategy for crowd simulation. This system

Figure 8. This graph shows the minimum number of polygons
that are necessary in order to achieve imperceptible errors for
various image sizes. Larger images show more detail and
require more polygons to retain muscle tone and facial details
of the original meshes.

Mesh Simplification Vs. Image Size

0

2000

4000

6000

8000

10000

12000

14000

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

Image Size (Pixels)

S
im

pl
if

ca
tio

n
(N

um
be

r
of

 P
ol

yg
on

s)

12000 Polygons

500 Polygons 100 Polygons

4000 Polygons

8000 Polygons

1000 Polygons

Figure 7. Simplified meshes without texture mapping contain
noticeable artifacts.

6

Crowd Size Vs. Image Size
(images captured at 0° latitude only)

0

200

400

600

800

1000

1200

1400

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

Image Size (Pixels)

C
ro

w
d

S
iz

e
(N

um
be

r
of

 H
or

se
s)

Original Meshes Only
Mesh Simplification
Multi-LOD Mesh Simplification
2D Impostors
NP3D Impostors

Figure 10. This graph shows the same measurements at the
previous one, except it shows what happens if images are
captured only around 0° latitude. The 2D impostor method
drops off starting all 128x128 due to texture memory
swapping.

allows the characters to rotate with respect to the camera
position without animation artifacts. It also reduces the
necessary memory requirements. Our method is ideal for
video game and interactive rendering, because it allows for
real-time rendering.

References
[1] Hoppe, H., Progressive meshes. In Proceedings of the 23rd

Annual Conference on Computer Graphics and interactive
Techniques SIGGRAPH '96. ACM Press, New York, NY,
pp. 99-108, 1996.

[2] Aubel, A., Boulic, R., Thalmann, D., Real-time display of
virtual humans: levels of details and impostors. IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 10, No. 2, 207–217, March 2000.

[3] Tecchia, F., Loscos, D., Chrysanthou, Y., Image-Based
Crowd Rendering, IEEE Computer Graphics and
Applications, pp. 36-43, 2002.

[4] O’Sullivan, C., Cassell, J., Vilhjalmsson, H., Dingliana, J.,
Dobbyn, S., McNamee, B., Peters, C., Giang, T., Levels of
Detail for Crowds and Groups. Computer Graphics Forum,
Vol. 21, No. 4, 733–741, 2002.

[5] Ahn, J., Kwangyun, K., Motion Level-of-Detail: A
Simplification Method on Crowd Scene. Proceedings
Computer Animation and Social Agents, 2004.

[6] Ahn, J., Oh, S., and Wohn, K. 2006. Optimized motion
simplification for crowd animation: Research Articles.
Computer Animation and Virtual Worlds, Vol. 17, No. 3-4,
155-165, July 2006.

[7] Dobbyn, S., Hamill, J., O'Conor, K., O'Sullivan, C.,
Geopostors: a real-time geometry / impostor crowd
rendering system. Symposium on interactive 3D Graphics
and Games, I3D '05. ACM Press, New York, NY, 95-102,
2005.

[8] Wand, M., Straber, W., Multi-resolution rendering of
complex animated scenes, Eurographics Association, Vol.
21, No. 3, September 2002.

[9] Debevec, P. E., Taylor, C. J., Malik, J., Modeling and
rendering architecture from photographs: a hybrid
geometry- and image-based approach. Computer Graphics
and Interactive Techniques SIGGRAPH '96. ACM Press,
New York, NY, 11-20, 1996.

[10] Sillion, F., Drettakis, G., Bodelet, B., Efficient Impostor
Manipulation for Real-Time Visualization of Urban
Scenery, Computer Graphics Forum, Vol. 16, No, 3, C207–
C218, 1997.

[11] Decoret, X., Sillion, F., Schaufler, G., Dorsey, J., Multi-
layered impostors for accelerated rendering, Computer
Graphics Forum, Vol. 18, No, 3, 61–73, 1999.

[12] Schaufler, G., Dynamically generated impostors. In GI
Workshop on Modeling, Virtual Worlds, (Nov. 1995),
Fellner D. W., (Ed.), pp. 129–135.

[13] Sumner, R. W. and Popović, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23, 3 (Aug. 2004),
399-405.

[14] Garland, M. and Heckbert, P. S. 1997. Surface
simplification using quadric error metrics. Computer
Graphics and Interactive Techniques. ACM Press/Addison-
Wesley Publishing Co., New York, NY, 209-216.

Crowd Size Vs. Image Size

0

200

400

600

800

1000

8x8

16x
16

32x
32

64x
64

12
8x1

28

256
x2

56

Image Size (Pixels)

C
ro

w
d

S
iz

e
(N

um
be

r
of

 H
or

se
s)

Original Meshes Only
Mesh Simplification
Multi-LOD Mesh Simplification
2D Impostors
NP3D Impostors

Figure 9. This graph shows the maximum number of horses
that each method can generated while maintaining an
animation rate of at least 30 frames per second. Of all
methods, our 3D impostor method can generate the most
number of horses in real-time.

