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Abstract

We present a crowd rendering method that can animate
hundreds of characters in real-time. Existing methods 
utilize level-of-detail (LOD) schemes such as geometric 
simplification and impostors, which often consume large 
amounts of system resources and introduce visible 
animation artifacts. Popping artifacts are especially 
visible when the camera angle changes. We propose a 
system that utilizes non-planar 3D (NP3D) impostors in a 
crowd simulation that can be viewed from any perspective 
with less computing resources and popping artifacts than 
existing methods. For characters near the viewer, high-
resolution 3D meshes are rendered to provide detailed 
renderings. Distant characters are rendered using NP3D 
impostors, which are basically images projected onto low-
resolution versions of the original high-resolution meshes.
Our system is designed for use in interactive virtual 
environments, running on the average home computer 
system.

1. Introduction
Creating realistic crowds is an important feature of 

many interactive virtual environments. Many games 
simulate crowds of people that interact with each other like 
real people. These games must animate and render 
hundreds of characters in real-time. The camera must 
move about the scene seamlessly in order to provide an 
immersive experience. At animation studios, artists and 

engineers may want to sketch out crowd scenes and change 
camera angles interactively for storyboarding and 
planning. Interactive crowd simulations would be an 
invaluable tool for this purpose. However since a single 
character may consist of thousands of polygons, significant 
slowdown occurs when more than a hundred characters are 
animated on current computer hardware. Simplification 
methods are needed to reduce the number of rendered 
polygons in order to animate the scene in real-time.

To animate hundreds of characters, current methods 
adopt level-of-detail (LOD) schemes. Characters close to 
the camera are shown without any compression or 
reduction of image quality. However as characters move 
farther from the camera, they become smaller and require 
less details. Several detail reduction methods have been 
explored, such as geometric simplification and image-
based LOD methods. Geometric simplification methods 
introduce awkward skeletal animations, and they use large 
amounts of memory to store joint reduction data. Image-
based methods must make a tradeoff between introducing
animation popping artifacts and consuming lots of texture 
memory storing their images. Because they consume a lot 
of resources, they are unusable in large game engines 
which reserve most of their GPU resources for other 
purposes.

We present a new non-planar 3D (NP3D) impostor 
LOD rendering method and demonstrate it in a working 
system. NP3D impostors are images projected onto low-
resolution versions of the original high-resolution meshes. 
Since the impostor is not a flat image, a single impostor 
can be viewed from multiple perspectives. This increases 
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Figure 1. Our NP3D impostor method renders crowds using significantly less texture memory than the 2D impostor method, while 
maintaining visual quality identical to the original meshes. The impostors shown here were rendered using 64x64 pixel image sizes. 
Because NP3D impostors require fewer images, its memory consumption is less than a tenth of the 2D impostor’s consumption.
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the validity and life of a single impostor which offers 
distinct advantages over traditional 2D impostors.

Our system provides an interactive, real-time 
simulation. It is capable of animating and rendering 
hundreds of characters with minimal artifacts and less 
texture memory than other systems. The camera moves
seamlessly about the scene, from directly overhead to a 
side profile of the scene, and anywhere in between. 
Characters near the camera are rendered using the original 
high-resolution 3D meshes. For distant characters, we 
render them using NP3D impostors.

The main contribution of our work is a new crowd 
rendering method using NP3D impostors that can be 
implemented in a real-time crowd animation system. We 
demonstrate this method in a simple crowd system and 
analyze the improved texture memory usage and frame rate 
relative to 2D imposters. 

2. Related Works
Geometric simplification is well studied for the purpose

of crowd simulation. Ahn [5][6] reduces motion
complexity by reducing the number of articulated skeletal 
joints. However these motion simplifications introduce 
visible animation errors as characters move closer to the 
camera. Missing joints and limbs become highly visible. 
Hoppe [1], O’Sullivan [4] and Wand [8] use mesh 
simplification to reduce the number of polygons in their 
key frame meshes. Farther characters are replaced with 
progressively simpler meshes. However these meshes are 
expensive to store and regenerate during continuous crowd 
simulation.

Image-based rendering methods, in which geometries 
are replaced with 2D impostor images, have also been 
investigated, e.g. Aubel [2], O’Sullivan [4], and Dobbyn 
[7]. For every camera viewpoint, impostors are pre-
generated thus diverting complex geometric rendering to a 
preprocessing step. This enables real-time animation 

during the actual simulation, because impostors are 
rendered in place of complex meshes. However impostors 
are view dependent, so the transition from one impostor to 
another is not smooth and distracting popping artifacts 
occur. Furthermore the impostor images are stored in GPU 
texture memory, which have limited capacities and must be 
shared with other textures. Because impostors are 
collected for every desired viewpoint, the texture memory 
space fills up quickly.

Some advanced impostor methods aim at reducing the
amount of required texture memory. Tecchia [3] explore 
texture compression, a more efficient manner to store 
impostors. However the storage capacity remains bounded, 
and it is not possible to store impostors for every possible 
camera viewpoint. Dynamic impostor generation is 
explored by Schaufler [12], but this is bounded by the
available processing power. During continuous crowd
simulation, there is a very short time frame in which to
generate these impostors. It is usually not possible to
dynamically generate the impostors without animation lag.
So these systems either reduce the resolution of their
impostors or reduce the total number of impostor images.
The former increases the distance at which the impostors 
may replace the 3D geometries. The latter increases the 
angular separation between each successive impostor, thus 
increasing the occurrence and severity of popping.

View-dependent texture mapping has been used to 
create virtual walks through city landscapes. Debevec [9], 
Sillion [10], and Decoret [11] describe methods that allow 
for multiple views of buildings. They recreate simple
geometric building meshes and then texture map images 
onto each face of the buildings. This works well for
buildings having well-defined shapes and planar faces.
However its application to human and animals has not 
been explored.

Figure 2. 2D impostors are created by texture mapping an 
image of the character onto a quadrilateral projection plane 
that faces the camera.

2D Impostors NP3D Impostors

Figure 3. NP3D impostors are created by texture mapping an 
image of the character onto a simplified version of the 
original mesh.
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2D Impostors
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Figure 4. The impostors (shown in blue) are superimposed over the original meshes (shown in red). Screen captures were taken at 5° 
increments around the horse. The purple portions show where the impostor and original mesh match up. Notice that the 3D impostors 
are always aligned with the original mesh, whereas the 2D impostors are seldom aligned properly, resulting in animation popping 
artifacts. All impostors were generated using 30° angular separation and 256x256 pixel texture images.

Impostor Error

NP3D Impostors

3. Methods
Our NP3D method is based on existing impostor 

methods. In the following sections, 2D impostors are 
reviewed, followed by an explanation of our NP3D 
impostor method, rendering, and implementation details.

3.1. 2D Impostors

A 2D impostor is created by rendering one quadrilateral
projection plane that directly faces the camera (i.e., the 
plane is perpendicular to the line of sight from the camera 
to the plane). The appropriate impostor image is retrieved 
from memory and texture mapped onto the projection 
plane. See figure 2. During animation, the projection plane 
rotates and the impostor image changes as needed for the 
current view.

3.2. NP3D Impostors

NP3D impostors are created in much the same manner 
as 2D impostors, except that the images are texture 
mapped onto a simplified version of the original mesh 
instead of a simple quadrilateral. The simplified meshes 
contain the entire geometry, including the back-facing 
polygons, allowing us to reuse the same mesh in all views.
Like 2D impostors, only the camera-facing side of the 
mesh needs to be textured. See figure 3. Also like 2D 
impostors, the impostor image changes as needed for the 
current view.

The number of impostor images plays a crucial role in 
the quality of the animation. For both 2D and NP3D 
impostors, images are captured at discrete locations around 
the original mesh. These locations are distanced by a 
predetermined degree of angular separation. If the angular 
separation is too small, there will be a lot of images to 
store and memory will fill up. If the angular separation is 
too large, popping artifacts will be visible during 
animation. These artifacts occur when the desired viewing 

angle differs from the captured viewing angle. In figure 4, 
a 30° angular separation was used to show the effects of a 
large angular separation. The 2D impostors do not align 
with the original meshes, resulting in popping during 
animation. However the NP3D impostors align perfectly 
with the original meshes, resulting in zero popping.

3.3. Rendering

We employ LOD techniques to enable efficient 
rendering of each animation frame. The method utilizes 
two levels-of-detail to provide realistic, real-time 
simulations. For high LOD, the full meshes are displayed. 
For low LOD, the NP3D impostors are created and 
displayed. To determine the LOD at each time step, we 
check the pixel-to-texel ratio of each character. If a 
character’s pixel-to-texel ratio is greater than one, we 
render the character using high LOD. Otherwise the 
character is rendered using low LOD.

To create the NP3D impostors, the appropriate low-
resolution mesh, imposter image, and texture coordinates 
are retrieved from memory. The low-resolution mesh is 
chosen such that it corresponds to the character’s current 
animation frame. While the meshes are view-independent, 
the impostor image and texture coordinates are view-
dependent. These are chosen such that they are closest to 
the desired viewing angle, taking into consideration the 
horse’s rotation and camera viewing angle with respect to 
the horse. Once we have the appropriate mesh, image, and 
coordinates, the image is texture mapped onto the mesh 
using the texture coordinates.

3.4. Implementation

We start with twelve high-resolution 3D horse meshes. 
The meshes form a gallop animation sequence for a single
horse. The meshes have approximately 17,000 polygons
each. These meshes were taken from Sumner’s horse data 
set [13]. We use these high-resolution meshes as our high 
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LOD data set.
We derive our low LOD data set from the high-

resolution meshes. The low LOD data set consists of low-
resolution meshes, high-detail impostor images, and 
texture coordinates that map the impostor images onto the 
low-resolution meshes.

To obtain the low-resolution meshes, we simplify the 
high-resolution meshes down to 400 polygons each, using 
Garland’s quadrics-based mesh simplification tool [14].
These low-resolution meshes serve as the projection 

surface for the NP3D impostors.
To obtain the high-detail impostor images, we render 

each high-resolution mesh in a fixed-sized frame buffer. 
We capture impostor images by longitudinally and 
latitudinally rotating the camera around the horse at a 
predetermined degree of angular separation. At each 
position the frame buffer is read and stored as a texture 
image. This gives us our NP3D imposter images, which 
are stored in texture memory. We employ NP3D imposters 
in order to minimize texture memory consumption, since 
the imposter must remain in memory at all times.

To obtain the texture coordinates, we render the low-
resolution meshes in the same fixed-size frame buffer and
with the same camera orientations as in the previous step.
But instead of capturing images, we capture the positions
of each mesh vertex in the frame buffer. This gives us our 
texture coordinates, which are used to map the impostor 
image onto the low-resolution mesh.

Our system randomly seeds the environment with horses 
at various animation time steps. In each time step, we 
update each character’s current animation frame and 
randomly move the horse forward, left or right. We 
employ a simple occupancy grid to prevent collisions 
between characters.

4. Results
In figure 1, we display three images from our simulation 

system. The left image shows the crowd simulation 
without any LOD optimization. The middle image shows 
the crowd simulation using the traditional 2D impostor 
method. The right image shows the crowd simulation using 
our NP3D impostor method. Notice that the NP3D image 
quality is identical in all cases, but the texture memory 
utilization and frame rate are substantially better using 
NP3D impostors. Animated results are provided in the 
accompanying video.

We quantified the degree to which NP3D impostors 
allow for the reduction of angular separation of texture 
images. We initially tried to use an objective measure such 
as pixel intensity error, but found that it correlated poorly 
with human perceptual error. In order to insure that our 
results are perceptually meaningful, a human user
identified the greatest angular separations at which 
rendering artifacts are not visible. This was done by 
gradually increasing the angular separation, rotating the 
character, and visually comparing the impostor to the 
original mesh. This experiment was repeated for different 
image sizes, ranging from 256x256 down to 8x8 pixels. 
See figure 5. Note that NP3D impostors allow for 
significantly greater degrees of angular separation at every 
size.

Based upon these required angular separations, we 
calculated and compared the required amount of texture 
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Figure 5. This graph shows the maximum angular separation 
that is allowable to achieve imperceptible error for different 
impostor image sizes. At any particular image size, 3D 
impostors can achieve this goal with greater angular 
separation and therefore less texture images than 2D 
impostors.

Texture Memory Vs. Image Size
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Figure 6. This graph shows the total texture memory size that 
is necessary to achieve imperceptible error for each of the 
impostor image sizes. As the image size increases, 3D 
impostors can achieve this goal with substantially less memory 
than 2D impostors.



5

memory for each method. See figure 6. NP3D impostors 
consume substantially less memory than 2D impostors
while maintaining the same visual quality. This is possible 
because NP3D impostors allow for a larger angular 
separation between impostor images and thus require 
fewer images. The NP3D method is able to fit all images 
into the memory available on current computer systems.
However for 128x128 and 256x256 sized images, the 2D 
requirement far exceeds the available memory.

We performed another experiment to see how our NP3D 
impostor method compares to simple mesh simplification
LOD techniques without texture mapping. In general mesh 
simplification produces noticeably bad renderings when 
meshes are over simplified. See figure 7. Our human user 

determined the smallest number of polygons at which 
rendering artifacts are not visible for each image size. See 
figure 8. As the image size increases, more polygons are 
necessary to achieve zero rendering artifacts.

Using these determined polygon simplifications, we 
created a simulation using mesh simplification. We then 
compared the crowd size capabilities of the simulation 
using original full meshes only, mesh simplification, 2D 
impostors, and NP3D impostors. See figure 9. Overall the 
NP3D impostor method surpasses the capability of the 
other methods. It is able to animate over 900 characters 
with 256x256 sized images. The 2D and NP3D impostor 
methods followed each other closely through the 64x64 
sized images, but the 2D impostor method could not 
render any horses when the image size reaches or exceeds 
128x128, because the required memory exceeds the 
system’s resources.

To better understand the texture memory constraint, we 
reran the previous comparison using only a side-view of 
the simulation. This allowed us to strip the system of all 
images, except those taken at 0° latitude. This reduced the 
texture consumption, so that the 2D impostor simulation 
could run. See figure 10. Again the NP3D impostor 
method exceeds the capability of the 2D method. The 2D 
method drops off starting with the 128x128 image size, 
due to texture swapping between the graphics card 
memory and main memory.

We tested mesh simplification in two ways. First we 
used two levels-of-detail with transition at the same depth 
as the imposter methods. With mesh simplification, there 
is a tradeoff between using fewer polygons with a distant 
transition depth and having a closer transition depth with 
more polygons in the simplified mesh. Note that the 
optimal tradeoff occurs with the depth plane equivalent to 
a 64x64 image size. It is possible to achieve better
performance using multiple levels-of-detail. We created 7 
depth zones and used the optimal number of polygons in 
each zone. In the figures 9 and 10, the single lone dot 
represents the largest crowd size if multiple levels-of-detail
are used with mesh simplification. While this exceeds the 
performance of mesh simplification with a single transition 
plane, it does not perform as well as NP3D impostors. 

We verified that all simulations were limited either by 
polygon count or texture memory. In the case of our test 
machine, the limits are 30 million polygons per second and 
1 GB of texture memory.

5. Conclusions
We demonstrated how to animate and render hundreds 

of characters in real-time. We developed an algorithm that
combines high-resolution 3D scanned meshes and
synthesized NP3D impostors into a new rendering
optimization strategy for crowd simulation. This system

Figure 8. This graph shows the minimum number of polygons 
that are necessary in order to achieve imperceptible errors for 
various image sizes. Larger images show more detail and 
require more polygons to retain muscle tone and facial details 
of the original meshes.
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Crowd Size Vs. Image Size
(images captured at 0° latitude only)

0

200

400

600

800

1000

1200

1400

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

Image Size (Pixels)

C
ro

w
d 

S
iz

e
(N

um
be

r 
of

 H
or

se
s)

Original Meshes Only
Mesh Simplification
Multi-LOD Mesh Simplification
2D Impostors
NP3D Impostors

Figure 10. This graph shows the same measurements at the 
previous one, except it shows what happens if images are 
captured only around 0° latitude. The 2D impostor method 
drops off starting all 128x128 due to texture memory 
swapping.

allows the characters to rotate with respect to the camera
position without animation artifacts. It also reduces the 
necessary memory requirements. Our method is ideal for 
video game and interactive rendering, because it allows for 
real-time rendering.
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Figure 9. This graph shows the maximum number of horses 
that each method can generated while maintaining an 
animation rate of at least 30 frames per second. Of all 
methods, our 3D impostor method can generate the most 
number of horses in real-time. 


