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Abstract

Digital cameras are becoming increasingly cheap and uioiggi leading researchers to
exploit multiple cameras and plentiful processing to aeather and more accurate rep-
resentations of real settings. This thesis addressessis$geale in large camera arrays. |
present a scalable architecture that continuously streaios video from over 100 inex-
pensive cameras to disk using four PCs, creating a one gigdegurar-second photometer.
It extends prior work in camera arrays by providing as muattrod over those samples as
possible. For example, this system not only ensures thaiaimeras are frequency-locked,
but also allows arbitrary, constant temporal phase shétsvéen cameras, allowing the
application to control the temporal sampling. The flexibleumting system also supports
many different configurations, from tightly packed to wilalpaced cameras, so appli-
cations can specify camera placement. Even greater flixilsilprovided by processing
power at each camera, including an MPEG2 encoder for videgoession, and FPGAs
and embedded microcontrollers to perform low-level imageessing for real-time appli-
cations.

| present three novel applications for the camera arrayhigtlight strengths of the

architecture and the advantages and feasibility of workitth many inexpensive cam-
eras: synthetic aperture videography, high speed videbgrand spatiotemporal view
interpolation. Synthetic aperture videography uses naagemoderately spaced cameras
to emulate a single large-aperture one. Such a camera canreagh partially occluding
objects like foliage or crowds. | show the first synthetic rape images and videos of
dynamic events, including live video accelerated by imageps performed at each cam-
era. High-speed videography uses densely packed cametastaggered trigger times
to increase the effective frame rate of the system. | show tlosompensate for artifacts
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induced by the electronic rolling shutter commonly usedgxpensive CMOS image sen-
sors and present results streaming 1560 fps video usingrb2rea. Spatiotemporal view
interpolation processes images from multiple video camgraynthesize new views from
times and positions not in the captured data. We simultasig@xtend imaging perfor-
mance along two axes by properly staggering the triggersioienany moderately spaced
cameras, enabling a novel multiple-camera optical flowavdrfor spatiotemporal view
interpolation.
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Chapter 1
Introduction

Digital cameras are becoming increasingly cheap and ubigsli In 2003, consumers
bought 50 million digital still cameras and 84 million carmerquipped cell phones. These
products have created a huge market for inexpensive imagers lenses and video com-
pression electronics. In other electronics industriesyroodity hardware components have
created opportunities for performance gains. Exampldsidechigh-end computers built
using many low-end microprocessors and clusters of inesipefPCs used as web server
or computer graphics render farms. The commoditizationadw cameras prompts us to
explore whether we can realize performance gains using in@xpensive cameras.

Many researchers have shown ways to use more images tosedreaperformance of
an imaging system at a single viewpoint. Some combine m@stof a static scene taken
from one camera with varying exposure times to create imaggsincreased dynamic
range [1, 2, 3]. Others stitch together pictures taken from position with abutting fields
of view to create very high resolution mosaics [4]. Anothkxses of multi-image algo-
rithms, view interpolation, uses samples from differeypoints to generate images of a
scene from new locations. Perhaps the most famous examtpiis téchnology is the Bullet
Time special effects sequencesTine Matrix. Extending most of these high-performance
imaging and view interpolation methods to real, dynamicmsserequires multiple video
cameras, and more cameras often yield better results.

Today one can easily build a modest camera array for the pfiaenhigh-performance
studio camera, and it is likely that arrays of hundreds onexg¢housand cameras will

1



2 CHAPTER 1. INTRODUCTION

soon reach price parity with these larger, more expensiite.Umarge camera arrays create
new opportunities for high-performance imaging and vieteripolation, but also present
challenges. They generate immense amounts of data thatb@wstptured or processed
in real-time. For many applications, the way in which theadatcollected is critical, and
the cameras must allow flexibility and control over theirgelament, when they trigger,
what range of intensities they capture, and so on. To comthieedata from different
cameras, one must calibrate them geometrically and radimaky, and for large arrays to
be practical, this calibration must be automatic.

Low-cost digital cameras present additional obstaclesrthest be overcome. Some
are the results of engineering trade-offs, such as the ¢ittler gels used in single-chip
color image sensors. High-end digital cameras use thregamsansor chips and expensive
beam-splitting optics to measure red, green and blue valuesch pixel. Cheaper, single-
chip color image sensors use a pattern of filter gels over ittedspthat subsamples color
data. Each pixel measures only one color value-red, grebluer The missing values at
each pixel must be interpolated, from neighboring pixehgathich can cause errors. Other
obstacles arise because inexpensive cameras take advantagaknesses in the human
visual system. For example, because the human eye is sensitielative, not absolute,
color differences, the color responses of image sensosdlaveed to vary greatly from chip
to chip. Many applications for large camera arrays will needalibrate these inexpensive
cameras to a higher precision than for their intended p@gos

1.1 Contributions

This thesis examines issues of scale for multi-camera mgstand applications. | present
the Stanford Multiple Camera Array, a scalable architecthisg continuously streams
color video from over 100 inexpensive cameras to disk usmg PCs, creating a one
gigasample-per-second photometer. It extends prior wodamera arrays by providing
as much control over those samples as possible. For exath@esystem not only en-
sures that the cameras are frequency-locked, but alsosaioitrary, constant temporal
phase shifts between cameras, allowing the applicatioontral the temporal sampling.
The flexible mounting system also supports many differemfigarations, from tightly
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packed to widely spaced cameras, so applications can gpegifera placement. As we
will see, the range of applications implemented and ardteig for the array require a vari-
ety of physical camera configurations, including dense arsgppacking and overlapping
or abutting fields of view. Even greater flexibility is proeid by processing power at each
camera, including an MPEG2 encoder for video compressiuth F# GAs and embedded
microprocessors to perform low-level image processingdal-time applications.

| also present three novel applications for the camera dhatyhighlight strengths of
the architecture and demonstrate the advantages andifigasitworking with large num-
bers of inexpensive cameras: synthetic aperture videbgragh speed videography, and
spatiotemporal view interpolation. Synthetic apertugeaigraphy uses many moderately
spaced cameras to emulate a single large-aperture one. aStenmera can see through
partially occluding objects like foliage or crowds. Thigawas suggested by Levoy and
Hanrahan [5] and refined by Isaksen et al. [6], but implentotdy for static scenes or
synthetic data due to lack of a suitable capture system. w she first synthetic aperture
images and videos of dynamic events, including live symthegterture video accelerated
by image warps performed at each camera.

High-speed videography with a dense camera array takesadpaof the temporal
precision of the array by staggering the trigger times of @sdly packed cluster of cam-
eras to create an effectively higher resolution video camgypically, high-speed cameras
cannot stream their output continuously to disk and aretdichto capture durations short
enough to fit on volatile memory in the device. MPEG encodeie array, on the other
hand, compress the video in parallel, reducing the total bahdwidth and allowing contin-
uous streaming to disk. One limitation of this approach & the data from cameras with
varying centers of projection must be registered and coetbio create a single video.
We minimize geometric alignment errors by packing the camers tightly as possible
and choosing camera triggers orders that render artifastsdbjectionable. Inexpensive
CMOS image sensors commonly use an electronic rolling shuitech is known to cause
distortions for rapidly moving objects. | show how to compate for these distortions by
resampling the captured data and present results showeanshg 1560 fps video cap-
tured using 52 cameras.

The final application | present, spatiotemporal view intdagion, shows that we can
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simultaneously improve multiple aspects of imaging periance. Spatiotemporal view
interpolation is the generation of new views of a scene fraronlkection of input images.
The new views are from places and times not in the originaiuzad data. While previous
efforts used cameras synchronized to trigger simultarigolushow that using our array
with moderately spaced cameras and staggered trigger timpgsves the spatiotemporal
sampling resolution of our input data. Improved samplingl@es simpler interpolation
algorithms. | describe a novel, multiple-camera opticalvfiariant for spatiotemporal
view interpolation. This algorithm is also exactly the s#gation necessary to remove the
geometric artifacts in the high-speed video applicationsed by the cameras’ varying
centers of projection.

1.2 Contributions of Others to this Work

The Stanford Multiple Camera Array Project represents warkedby a team of students.
Several people made key contributions that are describ#dsrthesis. The design of the
array itself is entirely my own work, but many students aidethe implementation and
applications. Michal Smulski, Hsiao-Heng Kelin Lee, MamiGoyal and Eddy Talvala
each contributed portions of the FPGA Verilog code. Neehilbslped implement the

high-speed videography and spatiotemporal view intetjpolapplications, and worked on
several pieces of the system, including FPGA code and sonme ddirger laser-cut acrylic
mounts. Guillaume Poncin wrote networked host PC softwatle avvery nice graphical

interface for the array, and Emilio Antunez improved it watlpport for real-time MPEG

decoding.

Robust, automatic calibration is essential for large camemays, and two of my col-
leagues contributed greatly in this area. Vaibhav Vaistesponsible for the geometric
calibration used by all of the applications in this thesigs kbbust feature detector and
calibration software is a major reason why the array can hektyuand accurately cali-
brated. The plane + parallax calibration method he deviseddscribed in [7] is used
for synthetic aperture videography and enabled the algarltdevised for spatiotemporal
view interpolation. Neel Joshi and | worked jointly on cotmlibration, but Neel did the
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majority of the implementation. He also contributed manyhef key insights, such as fix-
ing the checker chart to our geometric calibration target @nfiguring camera gains by
fitting the camera responses for gray scale Macbeth chetdkéirees. Readers interested
in more information are referred to Neel's Masters thesjis [8

1.3 Organization

The next chapter examines the performance and applicadfqresst camera array designs
and emphasizes the challenges of controlling and captualdtg from large arrays. It re-
views multiple image and multiple camera applications taivate the construction of
large camera arrays and set some of the performance gowlshitbeld meet. To scale eco-
nomically, the Stanford Multiple Camera Array uses inexpangnage sensors and optics.
Because these technologies might be expected to interféheowrt vision and graphics
applications, the chapter closes with a discussion of ieege sensing technologies and
their implications for image quality and calibration.

Starting from the applications we intended to support asddes learned from past
designs, | set out to build a general-purpose research@ealpter 3 describes the Stanford
Multiple Camera Array and the key technology choices thatema&cale well. It summa-
rizes the design, how it furthers the state of the art, angb#inécular features that enable
the applications demonstrated in this thesis.

Chapters 4 through 6 present the applications mentionei@etirit show the value of
the array and our ability to work effectively with many in@xsive sensors. Synthetic aper-
ture photography requires accurate geometric image akghiout is relatively forgiving
of color variations between cameras, so we present it angeametric calibration meth-
ods first in chapter 4. Chapter 5 describes the high-speedgtidphy method. Because
this application requires accurate color-matching betwegemeras as well as good image
alignment, | present our radiometric calibration pipelirere as well. Finally, chapter 6
describes spatiotemporal view interpolation using thayariThis application shows not
only that we can use our cameras to improve imaging perfocmatong several metrics,
but also that we can successfully apply computer visionrdlgos to the data from our
many cameras.
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Chapter 2
Background

This chapter reviews previous work in multiple camera systiesign to better understand
some of the critical capabilities of large arrays and howigleslecisions affect system
performance. | also cover the space of image-based regdmnshhigh-performance imag-
ing applications that motivated construction of our arrag placed additional demands
on its design. For example, while some applications neey densely packed cameras,
others depend on widely spaced cameras. Most applicatampusre synchronized video,
and nearly all applications must store all of the video frdho&athe cameras. Finally,
because this work is predicated on cheap cameras, | conttladdapter with a discussion
of inexpensive image sensing and its implications for otgrided applications.

2.1 Prior Work in Camera Array Design

2.1.1 Virtualized Reality

Virtualized Reality™ [9] is the pioneering project in large video camera arrays the
existing setup most similar to the Stanford Multiple Camersaayx Their camera arrays
were the first to capture data from large numbers of syncheoshcameras. They use a
model-based approach to view interpolation that deducesc&be structure from multi-
ple views using disparity or silhouette information. Be@tisey wanted to completely
surround their working volume, they use many cameras spaaly around a dome or

7
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room.

The first iteration of their camera array design, called tbeC®me, used consumer
VCRs to record synchronized video from 51 monochrome CCD canjg#@a®]. They
routed a common sync signal from an external generator tof #ifieir cameras. To make
sure they could identify matching frames in time from diffiet cameras, they inserted time
codes from an external code generator into the verticakiotgrintervals of each camera’s
video before it was recorded by the VCR. This system trade@sitidy for capacity. With
one VCR per camera, they could record all of the video fromhalldameras for essentially
as long as they liked, but the resulting system is unwieldy expensive. The quality of
VCR video is also rather low, and the video tapes still had taliggized, prompting an
upgrade to digital capture and storage.

The next generation of their camera array, called the 3D-Rddin captured very nice
guality (640x480 pixel, 30fps progressive scan YCrCb) videonf49 synchronized color
S-Video cameras. Their arrangement once again used elxsgmasignal and time code
generators to ensure frame accurate camera synchronizakm store all of the data in
real-time, they had to use one PC for every three cameragielR€ clusters are bulky
and a challenge to maintain, and with very inexpensive casjehe cost of the PCs can
easily dominate the system cost. Even with the PC clustey,wrere unable to fully solve
the bandwidth problem. Because they stored data in each PEREBinain memory they
were limited to nine second datasets and could not contsiy@iream. Even with these
limitations, this was a very impressive system when it was built six years ago.

2.1.2 Gantry-based Systems for Light Fields

The introduction of light fields by Levoy and Hanrahan [5]ddrumigraphs by Gortler et
al. [12] motivated systems for capturing many images fromy wosely spaced viewing
positions. Briefly, a light field is a two-dimensional array (bko-dimensional) images,
hence a four-dimensional array of pixels. Each image isuzedtfrom a slightly different
viewpoint. By assembling selected pixels from several irsagew views can be con-
structed interactively, representing observer positiooispresent in the original array. If
these views are presented on a head-tracked or autostependisplay, then the viewing
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experience is equivalent to a hologram. These methodsreegery tightly spaced input
views to prevent ghosting artifacts.

The earliest acquisition systems for light fields used alsingoving camera. Levoy
and Hanrahan used a camera on a mechanical gantry to capeuhght fields of real
objects in [5]. They have since constructed a sphericalrg4h8] for capturing inward-
looking light fields. Gantries have the advantage of praxgdinlimited numbers of input
images, but even at a few seconds per image, it can take kkweara to capture a full light
field. Gantries also require very precise motion controliclvhis expensive. The biggest
drawback, of course, is that they cannot capture light fiefddynamic scenes. Capturing
video light fields, or even a single light field “snapshot” ofreoving scene, requires a
camera array.

2.1.3 Film-Based Linear Camera Arrays

Dayton Taylor created a modular, linear array of linked 35cameras to capture dynamic
events from multiple closely spaced viewpoints at the same [14]. A common strip of
film traveled a light-tight path through all of the adjaceateras. Taylor's goal was to
decouple the sense of time progressing due to subject maidicamera motion. Because
his cameras were so closely spaced he could create very tmgpesual effects of virtual
camera motion through “frozen” scenes by hopping from oe/\0 the next. His was the
first system to introduce these effects into popular culture

2.1.4 Bullet Time

Manex Entertainment won the 2002 Academy Awdadfor Best Achievement in Visual
Effects for their work inThe Matrix. The trademark shots in that film were the “Bullet
Time” sequences in which moving scenes were slowed to a teadsill while the cam-
era appeared to zoom around them at speeds that would besilpas real life. Their
capture system used two cameras joined by a chain of overtillGtameras and improved
upon Taylor’s in two ways. The cameras were physically irshelent from each other and
could be spaced more widely apart to cover larger areas,dwelgl be sequentially trig-
gered with very precise delays between cameras. Afterialighe still images, the actors
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were segmented from them and placed in a computer-genenatgédnment that moved in
accordance with the apparent camera motion.

Like Taylor's device, this camera array is very specialpose, but it is noteworthy
because the sequences produced with it have probably ekposee people to image-
based rendering techniques than any others. They showabkibiléy of combining data
from many cameras to produce remarkable effects. The syistatso the first | know of
with truly flexible timing control. The cameras were not jaghchronized—they could be
triggered sequentially with precisely controlled delagsween each camera’s exposure.
This gave Manex unprecedented control over the timing of tteemeras.

2.1.5 Dynamic Light Field Viewer

Yang et al. aimed at a different corner of the multiple canagray space with their real-
time distributed light field camera [15]. Their goal was teate an array for rendering a
small number of views from a light field acquired in real-tinvégh a tightly packed 8x8
grid of cameras. One innovative aspect of their design isrttaer than using relatively
expensive cameras like the 3D Room, they opted for inexpergimmodity webcams.
This bodes well for the future scalability of their systemt the particular cameras they
chose had some drawbacks. The quality was rather low at 3P0piels and 15fps. The
cameras had no clock or synchronization inputs, so theuiesad| video was synchronized
only to within a frame time. Especially at 15fps, the framdraome motion can be quite
large for dynamic scenes, causing artifacts in images reddeom unsynchronized cam-
eras. Unsynchronized cameras also rule out multiple viguthdalgorithms that assume
rigid scenes.

A much more limiting choice they made was not to store all & tlata from each
camera. This, along with the lower camera frame rate andutso, was their solution
to the bandwidth challenge. Instead of capturing all of taadthey implemented what
they call a “finite-view” design, meaning the system retuinoesn each camera only the
data necessary to render some small finite number of views fine light field. As they
point out, this implies that the light field cannot be stored later viewing or used to
drive a hypothetical autostereoscopic display. Moreacainough they did not claim that
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had any goals for their hardware other than the light fielavinig, the finite-view design
means that their device is essentially single-purposeaniot be used for applications that
require video from all cameras. Thus, the bandwidth probe® circumvented at the cost
of flexibility and quality.

2.1.6 Self-Reconfigurable Camera Array

The Self-Reconfigurable Camera Array developed by Zhang and Gas 48 cameras
with electronically controlled pan and horizontal motid®]. The aim of their projectis to
improve view interpolation by changing the camera posgtiand orientations in response
to the scene geometry and the desired virtual viewpointgh electronically controlled
camera motion is an interesting property, they observetkigt system performance was
limited by decisions to use commodity ethernet cameras asidgée PC to run the array.
The bandwidth constraints of their ethernet bus limit therdotv quality, 320x240 images.
They also note that because they cannot easily synchrdreaecbommodity cameras, their
algorithms for reconfiguring the array do not track fast otgevell.

2.2 View Interpolation and High-X Imaging

All of the arrays mentioned in the previous section were Udsediew interpolation, and
as such are designed for each camera or view to capture aeup@jspective image of a
scene. This case is callealltiple-center-of-projection (MCOP) imaging [17]. If instead
the cameras are packed closely together, and the scendicsesily far away or shallow,
then the views provided by each camera are nearly identrozduo be made so by a pro-
jective warp. We call this cassengle-center-of-projection (SCOP) imaging. In this mode,
the cameras can operate as a single, synthetic “high-X” m#éere X can be resolution,
signal-to-noise ratio, dynamic range, depth of field, fraate, spectral sensitivity, and so
on. This section surveys past work in view interpolation high-X imaging to determine
the demands they place on a camera array design. As we willrsese include flexibility
in the physical configuration of the cameras, including wegit packing; precise control
over the camera gains, exposure durations, and triggestiamel synchronous capture.
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Figure 2.1: Light Field Rendering uses arrays of images tateraew views of a scene.
(a) Sampling the light field using an array of cameras. (b) Rend a new view. Each ray
in the new view is mapped to rays from the acquired imageshitngimplified diagram,
the rays can be mapped exactly to rays from the cameras. &lgntite exact ray from the
virtual viewpoint is not captured by any one camera, so ihisrpolated from the nearest
sampled rays.

2.2.1 View Interpolation

View interpolation algorithms use a set of captured imades €cene to generate views
of that scene from new viewpoints. These methods can bearaed by the trade-off
between the number of input images and the complexity ofritezpolation process. The
original inspiration for the Stanford Multiple Camera Arrdyevoy and Hanrahan’s work
on Light Field Rendering [5], lies at the extreme of using viemge numbers of images
and very simple interpolation. The light field is the radiams a function of position and
direction in free (unoccluded) space. Using a set of camerascan sample the light field
on a surface in space. To create a new view, one simply resartip image data. Figure
2.1 shows this in two dimensions.

Light field rendering is an example of image-based rend€iBig). Traditional model-
based renderers approximate physics using models of thmeiiiktion, three-dimensional
structure and surface reflectance properties of a sceneelNd@ded rendering can produce
very compelling results, but the complexity of the modeld aendering grows with the
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complexity of the scene, and accurately modeling real scear be very difficult. Image-
based rendering, on the other hand, uses real or pre-rehideiges to circumvent many of
these challenges. Chen and Williams used a set of views wattopnputed correspondence
maps to quickly render novel views using image morphs [18kiTmethod has a rendering
time independent of scene complexity but requires a cooreggnce map and has trouble
filling holes when occluded parts of the scene become visible

Light field rendering uses no correspondence maps or ekflixiscene models. As
described earlier, new views are generated by combiningesampling the input images.
Although rendering light fields is relatively simple, acgog them can be very challeng-
ing. Light fields typically use over a thousand input imag&se original light field work
required over four hours to capture a light field of a statengcusing a single translating
camera. For dynamic scenes, one must use a camera arragetieesill not hold still
while a camera is translated to each view position. Lightdfreindering requires many
very closely spaced images to prevent aliasing artifacteennterpolated views. Ideally
the camera spacing would be equal to the aperture size ofaanhra, but practically,
this is impossible. Dynamic scenes require not only mudtgameras, but also methods to
reduce the number of required input views.

The Virtualized Reality [9] work of Rander et al. uses fewer gas at the expense of
increasing rendering complexity. They surround their weywolume with cameras and
then infer the three-dimensional structure of the scenegusisparity estimation or voxel
carving methods [19, 20]. Essentially, they are combiniraglet-based and image-based
rendering. They infer a model for the scene geometry, butpeencolors by resampling
the images based on the geometric model. Matusik et al. mexs@another view interpo-
lation method, Image Based Visual Hulls [21], that uses sidtees from multiple views to
generate approximate structural models of foregroundotdbjélthough these methods use
fewer, more widely separated cameras than Light Field Ramglenferring structure using
multiple cameras is still an unsolved vision problem and$e@ artifacts in the generated
views.

How should a video camera array be designed to allow expatsreeross this range

of view interpolation methods? At the very least, it shoulore all of the data from all
cameras for reasonable length videos. At video rates (BG&psne motion, and hence the
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image motion from frame to frame, can be quite significant.siuoethods for inferring
3D scene structure assume a rigid scene. For an array of @aaeras, this condition will
only hold if the cameras are synchronized to expose at the sama. For pure image-based
methods like Light Field Rendering, unsynchronized cametiigesult in ghost images.
Light Field Rendering requires many tightly packed cameoas Virtualized Reality and
Image Based Visual Hulls use more widely separated cameratearly a flexible camera
array should support both configurations. Finally, all ;fgl applications assume that the
cameras can be calibrated geometrically and radiomdyrical

2.2.2 High-X Imaging

High-X imaging combines many single-center-of-projeciimages to extend imaging per-
formance. To shed light on camera array design requirenemtsis space, | will now enu-
merate several possible high-X dimensions, discuss prook wm these areas and consider
how we might implement some of them using a large array of casne

High-X Imaging Dimensions

High Resolution. Images taken from a single camera rotating about its optéxatier can
be combined to create high-resolution, wide field-of-vié@Y) panoramic image mosaics
[4]. For dynamic scenes, we must capture all of the data samebusly. Imaging Solutions
Group of New York, Inc, offers a “quad HDTV” 30 frame-per-sad video camera with a
3840 x 2160 pixel image sensor. At 8.3 megapixels per im&geid the highest resolution
video camera available. This resolution could be surpassttda 6 x 5 array of VGA
(640 x 480 pixel) cameras with abutting fields of view. Manymaanies and researchers
have already devised multi-camera systems for generaiileg vnosaics of dynamic scenes
[22]. Most pack the cameras as closely together as possiblgaroximate a SCOP system,
but some use optical systems to ensure that the camerasehtatojection are actually
coincident. As the number of cameras grow, these opticéésysbecome less practical.

If the goal is just wide field of view or panoramic imaging, gt necessarily high
resolution, then a single camera can be sufficient. For elgriipe Omnicamera created
by Nayar uses a parabolic mirror to image a hemispherical 6élview [23]. Two such
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cameras placed back-to-back form an omnidirectional camer

Low Noise. Itis well known that averaging many images of the same scssheces image

noise (measured by the standard deviation from the expeatad) by the square root of
the number of images, assuming the noise is zero-mean aondrelated between images.
Using an array of 100 cameras in SCOP mode, we should be al@dduoe image noise by
a factor of 10.

Super-Resolution. It is possible to generate a higher resolution image front afsdis-
placed low-resolution images if one can measure the campaoint spread function and
register the low-resolution images to sub-pixel accur&ey.[ We could attempt this with
an array of cameras. Unfortunately, super-resolutionnslifamentally limited to less than
a two-fold increase in resolution, and the benefits of mopaiimmages drops off rapidly
[25, 26], so abutting fields of view is generally a better solufor increasing image res-
olution. On the other hand, many of the high-X methods lidtece use cameras with
completely overlapping fields of view, and we should be abladhieve a modest resolu-
tion gain with these methods.

Multi-Resolution Video. Multi-resolution video allows high-resolution (spatiadir tem-
porally) insets within a larger lower-resolution video [2@sing an array of cameras with
varying fields of view, we could image a dynamic scene at phkeltresolutions. One use
of this would be to provide high-resolution foveal insetshini a low-resolution panorama.
Another would be to circumvent the limits of traditional smpesolution. Information
from high-resolution images can be used to increase résolaf a similar low-resolution
image using texture synthesis [28], image alignment [28jeocognition-based priors [26].
In our case, we would use cameras with narrower fields of viesapture representative
portions of the scene in higher resolution. Another versibthis would be to combine
a high-speed, low-resolution video with a low-speed, hgéolution video (both captured
using high-X techniques) to create a single video with higreame rate and resolution.
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High Dynamic Range. Natural scenes often have dynamic ranges (the ratio of tesgh
to darkest intensity values) that far exceed the dynamigaah photographic negative film
or the image sensors in consumer digital cameras. Areas cérseghat are too bright
saturate the film or sensor and look uniformly white, with rdad. Regions that are too
dark can be either be drowned out by noise in the sensor onysingb detected due to
the sensitivity limit of the camera. Any given exposure ocdyptures a portion of the total
dynamic range of the scene. Mann and Picard [2], and Debextklalik [3] show ways to
combine multiple images of a still scene taken with diffédemown exposure settings into
one high dynamic range image. Using an array of cameras &itfing aperture settings,
exposure durations, or neutral density filters, we coulémxthis idea to dynamic scenes.

High Spectral Sensitivity. Humans have trichromatic vision, meaning that any incident
light can be visually matched using combinations of jusé¢hfixed lights with different
spectral power distributions. This is why color cameras suea three values, roughly
corresponding to red, green and blue. Multi-spectral imaggnple the visible spectrum
more finely. Schechner and Nayar attached a spatially vgugpectral filter to a rotating
monochrome camera to create multi-spectral mosaics bksghes. As they rotate their
camera about its center of projection, points in the sceremaged through different
regions of the filter, corresponding to different portiorfstite visible spectrum. After
registering their sequence of images, they create imaghswich finer spectral resolution
than the three typical RGB bands. Using an array of camerds difterent band-pass
spectral filters, we could create multi-spectral videosywfainic scenes.

High Depth of Field. Conventional optical systems can only focus well on objedtisia

a limited range of depths. This range is called the depth &f béthe cameras, and it

is determined primarily by the distance at which the camsrtocused (depth of field

increases with distance) and the diameter of the camersuap¢larger apertures result in
a smaller depth of field). For static scenes, depth of fieldlmaextended using several
images with different focal depths and selecting, for eagklpthe value from the image

in which is is best focused [30]. The same principle could jyaliad to a SCOP camera
array. One challenge is that depth of field is most limitedelto the camera, where the
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SCOP approximation for a camera array breaks down. Sucdgssiplying this method
would require either an optical system that ensures a conueoter of projection for the
cameras or sophisticated image alignment algorithms.

Large Aperture. In chapter 4, | describe how we use our camera array as a lgnge s
thetic aperture camera. | have already noted that the varpwalepth of field caused
by large camera apertures can be exploited to look beyoripaoccluding foreground
objects, blurring them so as to make them invisible. In gt conditions, large apertures
are also useful because they admit more light, increasiagitimal-to-noise ratio of the
imaging system. This is the one high-X application that isb@eately not single-center-
of-projection. Instead, it relies on slightly differentrters of projection for all cameras.

High Speed. Typical commercial high-speed cameras run at frame ratésiodreds to
thousands of frames per second, and high-speed video caim@ra been demonstrated
running as high as one million frames per second [31]. As &raates increase for a fixed
resolution, continuous streaming becomes impossibléjtigusers to short recording du-
rations. Chapter 5 discusses in detail high-speed videaipsing the Stanford Multiple
Camera Array. Here, | will just reiterate that we use many senwith evenly staggered
triggers, and that parallel capture (and compression) joontinuous streaming.

Camera Array Design for High-X Imaging

A camera array for High-X imaging should allow all of the firentrol over various camera
parameters required by traditional single-camera appica but also address the issues
that arise when those methods are extended to multiple easmdfor multiple-camera
high-x applications, the input images should generally iegvs of the same scene at the
same time from the same position, from cameras that resmamdically to and capture
the same range of intensities. Thus, the cameras shouldsigmndd to be tightly packed
to approximate a single center of projection, synchronirettigger simultaneously, and
configured with wholly overlapping fields of view. Furtherrapwe must set their exposure
times and color gains and offsets to capture the same ranigéeokities. None of these
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steps can be done perfectly, and the cameras will always samye will need to calibrate
geometrically and radiometrically to correct residuabesr

For most high-x applications, at least one parameter muslitweed to vary, so a cam-
era array should also support as much flexibility and cowiel as many camera properties
as possible. In fact, we find reason to break every guideilsted above. For example, to
capture high dynamic range images, we configure the cameisense varying intensity
ranges. Synthetic aperture photography explicitly defiesSCOP model to capture multi-
ple viewpoints. To use the array for high-resolution cagtwe must abut the fields of view
instead of overlapping them. Finally, high-speed imag#liges on precisely staggered, not
simultaneous, trigger times. Flexibility is essential.

2.3 Inexpensive Image Sensing

Nearly all of the applications and arrays presented so fed uslatively high quality cam-
eras. How will these applications map to arrays of inexpensnage sensors? Cheap
image sensors are optimized to produce pictures to be vieywddimans, not by comput-
ers. This section discusses how cheap sensors exploit megteal insensitivity to certain
types of imaging errors and the implications of these o#atons for high performance
imaging.

2.3.1 Varying Color Responses

The vast majority of image sensors are used in single-caamgkcations where the goal
is to produce pleasing pictures, and human color percegimses relative differences
between colors, not absolute colors [32]. For these reasmansufacturers of image sensors
are primarily concerned with only the relative accuracylait sensors. Auto-gain and
auto-exposure ensure the image is exposed properly, anel bdlancing algorithms adjust
color gains and the output image to fit some assumption ofdhlw® content of the scene.
These feedback loops automatically compensate for angti@is in the sensor response
while they account for external factors like the illumirmati Without a reference, it is often
difficult for us to judge the fidelity of the color reproduatio
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For IBR and high-X applications that use just one camera ttucapnultiple images,
the actual shape of the sensor’s response curve (i.e. Idogx value as a function of
incident illumination), and its response to light of diat wavelengths, are unimportant
as long as they are constant and the response is monotorilcmivitiple cameras, differ-
ences in the absolute response of each camera becomeereldftirences between their
images. These differences can be disastrous if the imagelractly compared, either by a
human or an algorithm. A panoramic mosaic stitched togdther cameras with different
responses will have an obviously incorrect appearance) gwach region viewed indi-
vidually looks acceptable. Methods that try to establisiiegponding scene points in two
images often assume brightness constancy, meaning thana point appears the same
in all images of it. Correcting the color differences betweameras is essential for these
applications.

Because so few end users care about color matching betwesarsgrariations in color
response between image sensors are poorly documentedchicpr these differences can
be quite large. In chapter 5, | will show that for the imagesses in the array, the color
responses of 100 chips set to the same default gain and erpa@dues varies quite widely.

2.3.2 Color Imaging and Color Filter Arrays

One key result of color science is that because the human &yetly three different
types of cones for detecting color, it is possible to repnesdl perceptually discernible
colors with just three primaries, each having linearly eledent spectral power distribu-
tions. Practically, this means that color image sensorg neéd to measure the incident
illumination using detectors with three appropriately s&io spectral responses instead of
measuring the entire spectra. Typically, these respomsesspond roughly to what we per-
ceive as red, green and blue. Each pixel in an image sens@salky one measurement,
so some method must be devised to measure three color contpone

High-end color digital cameras commonly use three image@srand special optics
that send the incident red light to one sensor, the greendthan and the blue to a third.
This measures three color values at each pixel, but the ertige sensors and precisely
aligned optics increase the total cost of camera.



20 CHAPTER 2. BACKGROUND

Figure 2.2: The Bayer Mosaic color filter array. Each pixelsgsnonly one of red, green
or blue. Missing color values must be interpolated from hbaying pixels.

Inexpensive, single-chip color cameras use one image serigoa color filter array
on top of the pixels. Instead of measuring red, green and\@lees at each pixel, they
measure red, greesr blue. One example filter array pattern, the Bayer Mosaic [33],
shown in figure 2.2. The pattern exploits two properties ahln visual perception: we
are more sensitive to high frequency luminance informatiean chrominance, and our
perception of intensity depends most heavily on green.ligkiery other pixel has a green
filter, and the remaining two quarters are split between ratl ldue. Compared to the
three-chip solution, two thirds of the color informatiorlast at each pixel.

Mosaic images must be “demosaiced”, or interpolated, tegea a three-color RGB
values at each pixel. Naive methods to interpolate the ngssolor values, like simple
nearest neighbor replication or bilinear interpolatioan cause severe aliasing and false
colors near intensity edges. Adaptive algorithms [34, 3&fgrm better at edges, but
because the problem is ill-posed, no method will always &e &f artifacts. These artifacts
can be both visually objectionable and troubling for visadgorithms.

2.3.3 Inexpensive Manufacturing Methods

Manufacturing processes for cheap cameras are less pthaisdor expensive cameras.
Wider variations in device performance are tolerated ireotd increase yields, meaning
that image quality will suffer. For example, noisier imagasors may not be culled during
production, and wider color variations will be tolerated,maentioned previously. As we
will see in later sections on camera calibration, standardera models assume an image
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plane that is perpendicular to the lens’ optical axis. Oxjremsive sensors, however, the
dies may be tilted and rotated on the package, violatingrtivatel.

The optical systems for cheap cameras are also of lowertgualthough glass lenses
produce better images, very cheap cameras use plastislenkgbrid glass-plastic lenses
instead. Furthermore, avoiding artifacts such as spHenchchromatic aberration requires
multiple lens elements, which will be less precisely plared cheap sensor. Less precise
placement will cause distortions in the image and more isist@ncies between the camera
and commonly used models. Finally, high-quality lensesipieadjustments to control the
aperture size and focal length, but in inexpensive lenkesgtquantities are fixed.

In the next chapter, | describe the Stanford Multiple Camarayland the design de-
cisions | made in its implementation. One goal for the system to use cheaper, lower-
quality components and compensate for their drawbackgiwae where possible. Thus,
we chose fixed-focus, fixed-aperture lenses for their afioitdy. Similarly, the decreased
cost and complexity of designing single-chip color camenatsveighed the disadvantages
of subsampled color due to the Bayer Mosaic. These are twomraraf the many trade-
offs involved in the design of the array.
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Chapter 3
The Stanford Multiple Camera Array

The broad range of applications for camera arrays combin#édthe promise of inex-
pensive, easy to use, smart cameras and plentiful progessitivated exploration of the
potential of large arrays of cheap cameras. In this chapfgesent a scalable, general-
purpose camera array that captures video continuouslydr@n100 precisely-timed cam-
eras to just four PCs. Instead of using off-the-shelf camédessigned custom ones, lever-
aging existing technologies for our particular goals. 1sh@€MOS image sensors with
purely digital interfaces so | could easily control the garposure and timing for all the
cameras. MPEG2 video compression at each camera reduakgahsandwidth of the sys-
tem by an order of magnitude. High-speed IEEE1394 intesfatake the system modular
and easily scalable. Later chapters show the array beirhingevariety of configurations
for several different applications. Here, | explain thent@alogy that makes this possible.

3.1 Goals and Specifications

The Stanford Multiple Camera Array is intended to be a flexibkearch tool for exploring
applications of large numbers of cameras. At the very léaganted to be able to imple-
ment IBR and High-X methods similar to those described in tlevipus chapter. This
requires large numbers of cameras with precise timing ogritre ability to tightly pack or
widely space the cameras, and low-level control over theetarparameters. For the de-
vice to be as general as possible, it should capture andatatata from all the cameras. |

23
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also wanted the architecture to be modular and easily deadabt could span applications
requiring anywhere from a handful to over one hundred casngbme implication of this
scalability was that even though the array might have overtamdred cameras, it should
use far fewer than one hundred PCs to run it, ideally just afudnBinally, reconfiguring
the array for different applications should not be a sigaiftcobstacle to testing out new
ideas.

To begin quantifying the specifications of our array, | gdnvith the same video reso-
lution and frame rate as the 3D Room: 640x480 pixel, 30fpsnesxive scan video. 30fps
is generally regarded as the minimum frame rate for rea¢-tideo, and 640x480 is suit-
able for full-screen video. To demonstrate scalabilitymed for a total of 128 cameras. To
record entire performances, | set a goal of recording videmences at least ten minutes
long.

No off-the-shelf solution could meet these design goal® ddmeras had to be tiny and
provide a means to synchronize to each other. | also wanteelable to control and stream
video from at least 30 of the cameras to a single PC. There givwgile no cameras on the
market that satisfied these needs. By building custom caiexas able to explicitly add
the features | needed and leave room to expand the abilitibe cameras in the future.

3.2 Design Overview

The Stanford Multiple Camera array streams video from many G\t@age sensors over
IEEE1394 buses to a small number of PCs. Pixel data from eados#iows to an FPGA

that routes it to local DRAM memory for storage or to an IEEEA88ipset for transmis-

sion to a PC. The FPGA can optionally perform low-level imagecpssing or pass the
data through an MPEG encoder before sending it to the 13®%ehi An embedded mi-
croprocessor manages the components in the camera and oicates with the host PCs
over IEEE1394. In this section, | describe the major tecbgiels used in the array: CMOS
image sensors, MPEG video compression, and IEEE1394 coiroatiam.
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3.2.1 CMOS Image Sensors

One of the earliest decisions for the array was to use CMO8adsif CCD image sensors.
CCDs are fully analog devices, requiring more careful dessgipporting electronics to
digitize their output, and often multiple supply voltagesctocks. CMOS image sensors,
on the other hand, generally run off standard logic powepbeg, can output 8-or 16 bit-
digital video, and can connect directly to other logic chiensor gains, offsets, exposure
time, gamma curves and more can often be programmed intsteegjion the chip using
standard serial interfaces. Some CMOS sensors even haval tigiizontal and vertical
sync inputs for synchronization. These digital interfatedke the design simpler and more
powerful. Immediate practical concerns aside, becaud&atiggic can be integrated on
the same chip, CMOS sensors offer the potential of evolvitg ‘ismart” cameras, and it
seemed sensible to base our design on that technology.

The many advantages of using CMOS sensors come with a price. dé0sors are
inherently noisier [36] and less sensitive than their CCD ¢tewparts. For these reasons,
CCD sensors are still the technology of choice for most highioperance applications
[37]. | decided to sacrifice potential gains in image qualitgxchange for a much more
tractable design and added functionality.

3.2.2 MPEG2 Video Compression

The main goals for the array are somewhat contradictoryhaukl store all of the video
from all of our cameras for entire performances, but alséeseasily to over one hundred
cameras using just a handful of PCs. An array of 128, 640x48€l,80fps, one byte per
pixel, Bayer Mosaic video cameras generates over 1GB/seawoflata, roughly twenty
times the maximum sustained throughput for today’s comigdidird drives and peripheral
interfaces. The creators of the 3D Room attacked this problestoring raw video from
cameras to main memory in PCs. With 49 cameras and 17 PCs witiBb1i2 main
memory, they were able to store nearly 9 seconds of videoaptuce much longer datasets
using far fewer PCs, | took a different approach: compresiagyideo.

One video compression option for the array was DCT-baseaH-freime video encoding
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like DV. Commercial DV compression hardware was either tostlgare simply unavail-
able when | built the array. MPEG2 uses motion predictionrtcogle video with a much
higher compression ratio, and Sony, one of the early spensahis work, offered their
MPEG2 compression chips at a reasonable price. A relatstaigdard 5Mb/s bitstream
for 640x480, 30fps video translates into a compressiomw m@itil4:1, and at 4Mb/s, the
default for the Sony encoder, this results in 17.5:1 congioas 128 cameras producing
5Mb/s bitstreams create 80MB/s of data, back in the ballpddtamdwidths we might
hope to get from standard peripheral buses and striped maekd The disadvantage of
MPEG compression is that it is lossy, meaning that one caexanttly reproduce the orig-
inal uncompressed video. | opted to use it anyway, but inrdadmvestigate the effects of
compression artifacts | designed the cameras to simulteshestore brief segments of raw
video to local memory while streaming compressed videos Tis one compare MPEG2
compressed video with raw video for array applications.

3.2.3 |EEE1394

The last piece of the array design was a high bandwidth, fkexibd scalable means to
connect cameras to the host PCs. | chose the IEEE1394 HigbrParice Serial Bus [38],
which has several properties that make it ideal for this psep It guarantees a default
bandwidth of 40MB/s for “isochronous” transfers, data tlsadent at a constant rate. This
is perfect for streaming video, and indeed many digital @idameras connect to PCs via
IEEE1394 (also known as FireW{R and i-Link®). IEEE1394 is also well suited for a
modular, scalable design because it allows up to 63 devitesoh bus and supports plug
and play. As long as the bandwidth limit for a given bus is nateeded, one can add or
remove cameras at will and the bus will automatically desact enumerate each device.
Another benefit of IEEE1394 is the cabling environment. |[EB® cables can be up to
4.5m long, and an entire bus can span over 250m, good news vfamé to space our
cameras very widely apart, say on the side of a building.

The combination of MPEG2 and IEEE1394 creates a naturalésgeot” for a large
camera array design. A full bus can hold 63 devices; if we siteaone device for a
host PC, it can still support up to 62 cameras. 62 MPEG2 videxasts at 5SMb/s add
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up to 310Mb/s of data, just within the default 320Mb/s limittbe bus. 320Mb/s is also

well within the bandwidth of two software striped IDE hardwves, so this setup means
I could reasonably hope to require only one PC per 60 camarasri architecture. For

reasons | will discuss later, the current system suppoiys2incameras per PC with 4Mb/s
bitstreams, but a more sophisticated implementation shioeilable to approach a full set
of 62 cameras per bus.

3.3 System Architecture

To be scalable and flexible, the system architecture hadttomy meet the video capture
requirements but also easily support changes in the nunflcaneeras, their functionality,
and their placement. Each camera is a separate IEEE13%kdswi adding or removing
cameras is simple. | embedded a microprocessor to manadeHERd.394 interface, the
image sensor and the MPEG encoder. Accompanying the paydessn EEPROM for a
simple boot loader and DRAM memory for storing image data anéxecutable down-
loaded over the IEEE1394 bus. The image sensor, MPEG enanddEEE1394 chips all
have different data interfaces, so | added an FPGA for glgie |é\nticipating that | might
want to add low-level image processing to each camera, laibggher-performance FPGA
than necessary and connected it to extra SRAM and SDRAM merBepause the timing
requirements for the array were stricter than could be a&elieising IEEE1394 commu-
nication, especially with multiple PCs, | added CAT5 cablesdoh camera to receive the
clock and trigger signals and propagate them to two otheesiodll of these chips and
connections take up more board area than would fit on a timgealg-packable camera, so
| divided the cameras into two pieces: tiny camera “tilesfitedning just the image sensor
and optics, and larger boards with the rest of the electsonic

Figure 3.1 shows how the cameras are connected to each othierthe host PCs using
a binary tree topology. One camera board is designated asdheamera. It generates
clocks and triggers that are propagated to all of the otherecas in the array. The root
is connected via IEEE1394 to the host PC and two children. OAE5 cables mirror the
IEEE1394 connections between the root camera and the réisé @frray. When camera
numbers or bandwidth exceed the maximum for one IEEE1394Admiase multiple buses,
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Figure 3.1: Camera array architecture

each connected to their own host PC. In this case, only onedids the root camera, and
the clock and trigger signals are routed from it to the ergiray.

3.3.1 CameraTiles

For the camera tile, | looked for a digital, color, 640x48Rqbj 30fps image sensor with
synchronization inputs. The SONY MPEG encoder requires ¥2R/format input, but
for research purposes, | also wanted access to the raw RGB Batger The Omnivision
0OV8610 was the only sensor that met these needs. The OV86%¢{iips 800x600 pixel,
30fps progressive scan video. Our MPEG encoder can hanaliesit720x480 pixel video,
but currently we use only 640x480, cropped from the centehefOV8610 image. The
OV8610 has a two-wire serial interface for programming at ledgegisters controlling
exposure times, color gains, gamma, video format, regiontefest, and more.

Early on, | considered putting multiple sensors onto oneted circuit board to allow
very tight packing and to fix the cameras relative to eachrothiead hoped that the rigid
positioning of the cameras would make them less likely to enalative to each other after
geometric calibration. | constructed a prototype to tes #irangement and found that
any gains from having the cameras rigidly attached were riizne offset by the reduced
degrees of freedom for the positioning and orienting theezas Verging individually
mounted cameras by separately tilting each one is easy.iSTh& possible with multiple
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Figure 3.2: A cameratile.

sensors on the same flat printed circuit board without expeoptics. Manufacturing vari-
ations for inexpensive lenses and uncertainty in the placewf image sensor of a printed
circuit board also cause large variations in the orientatibthe cameras. The orientations
even change as the lenses are rotated for proper focus. @ugréese variations requires
individual mechanical alignment for each camera.

The final camera tile is shown in figure 3.2. Two meter longoibbables carry video,
synchronization signals, control signals, and power betwie tile and the processing
board. The tile uses M12x0.5 lenses and lens mounts, a corsiz®for small board cam-
eras (M12 refers to the thread pitch, and 0.5 to the radiuseoliens barrel in centimeters).
The lens shown is a Sunex DSL841B. These lenses are fixed fodusaae no aperture
settings. For indoor applications, one often wants a largeking volume viewable from
all cameras, so | chose a lens with a small focal length, sapaiture and large depth of
field. The DSL841B has a fixed focal length of 6.1mm, a fixed wper/# of 2.6, and a di-
agonal field of view of 57. For outdoor experiments and applications that requireomar
field of view cameras, we use Marshall Electronics V-433®{2nses with a fixed focal
length of 50mm, 6 diagonal field of view, and F/# of 2.5. Both sets of optics id&wan
IR filter.

The camera tiles measure only 30mm on a side, so they can kedpsery tightly.
They are mounted to supports using three spring-loadedavscr&éhese screws not only
hold the cameras in place but also let one fine-tune theint@ai®ns. The mounts let us
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Figure 3.3: 52 cameras on a laser-cut acrylic mount.

correct the direction of the camera’s optical axis (whichywtgpoints), but not rotations
around the axis caused by a slightly rotated image sensor.

The purpose of the mounting system is not to provide predigeraent, but to ensure
that the cameras have enough flexibility so we align themhlyugccording to our needs,
then correct for variations later in software. Being able éoge the cameras sufficiently
is critical for maintaining as large a working volume as ploles or even ensuring that all
cameras see at least one common point. Image rotationssasrériportant because they
do not affect the working volume as severely, but as we w#l lsder, they do limit the
performance of our high speed video capture method.

For densely packed configurations such as in figure 3.3, tmei@s are mounted di-
rectly to a piece of laser cut acrylic with precisely spaceléf for cables and screws. This
fixes the possible camera positions but provides very regpacing. Laser cutting plas-
tic mounts is quick and inexpensive, making it useful fortptgping and experimenting.
For more widely spaced arrangements, the cameras are ¢edriec80/20 mounts using
a small laser-cut plastic adaptor. 80/20 manufactures Wiegtcall the “Industrial Erec-
tor Set'®), a T-slotted aluminum framing system. With the 80/20 systesn can create
different camera arrangements to suit our needs. Figurebdaelv shows some of the
arrangements built with this system.
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Figure 3.5: Camera processing board
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3.3.2 Processing Boards

The processing board for each camera represents the bufie afoist, functionality and
design effort for the camera array. The board can capturea®@efs of raw video to local
memory and stream raw or MPEG-compressed video to the hosB&tuse there are
many ways to design a board for a given functionality, | wdlver the functionality and
hardware choices at a high level and delve into details amyaspects of the design that
enable unique features of the array (such as the timing acguor made it particularly
useful for research purposes.

Figure 3.5 shows the processing board. Each of these boantigges just one image
sensor. The major components were chosen to maximize peafae at reasonable design
and manufacturing cost. The SONY CXD1922Q MPEG2 encoders wktained at a
discount for this project. | chose a Texas Instruments etifts the IEEE1394 interface
because they were a clear market leader at the time. Thgseahim a glueless interface
to Motorola Coldfire processors, so | selected a Motorola MOBE2processor to manage
the IEEE1394 chipset and MPEG encoder. | included 32MB of EIRAM, the maximum
the processor supports, because this sets the limit on hovh maw data each camera
can capture. An IDT72V245 8KB FIFO buffers data between tEH1394 streaming
interface and the rest of the board.

A Xilinx XC2S200 Spartan Il FPGA along with a pair of 64Mbit SDRK and a pair
of 4Mbit SRAMs provides glue logic between the different chgnd some low-level pro-
cessing power. FPGAs, (Field Programmable Gate Arrays)canfigurable logic chips.
They do not fetch instructions like microprocessors. ladighey are a sea of identical,
generic logic blocks with programmable functions and icbv@nect. A bitfile streamed
into the FPGA configures the function of each logic block amel ¢connections between
blocks. The bitfile is specified using a behavioral langudge\erilog. This specification
is more complicated than programming a processor in C fod#ségner, but is necessary
to handle non-standard data interfaces and to process videal-time.

Figure 3.6 shows the data flow through the processing boardtr&éam raw video, the
FPGA routes the incoming video straight through to the IEEEchipset for isochronous
transfer back to the host PC. For MPEG2 compressed video,eteos data is sent to



3.3. SYSTEM ARCHITECTURE 33

MICROPROCESSOR 32MB DRAM EEPROM

| | |
JE— i

SDRAM ENCODER

Camera Processing Board

contro
IMAGE | iming, | BKBFIFO —| CCELS9ETE
1 CHIPSET [ __°
SENSOR | video | FPGA ‘
) |
| |
! l
| .
| 1in
| i l T CLOCKS |&—
| V "out
! TRIGGERS | . 9!
3 SRAM MPEG2 SYNCS e
|
|
|
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.6: Camera processing board block diagram

the MPEG2 encoder, and the resulting bitstream is routexlithr the FPGA back to the
IEEE1394 chipset. The FPGA can also simultaneously streédeovand capture up to
twenty uncompressed frames to the 32MB system memory usifdfieeassisted DMA
(Direct Memory Access) transfers. The Coldfire initiatesr@dimory accesses to the 32MB
DRAM. Without DMA transfers, the Coldfire would have to read th& data from the
FPGA, then write it back to the DRAM using the same data bus. IMM& transfer, the
microprocessor signals a write to the DRAM, but the data igidexl directly by the FPGA,
eliminating the unnecessary read.

3.3.3 System Timing and Synchronization

The precise timing control over each camera in the Stanfartliple Camera Array opens
up new research avenues that will be explored in the restigfltesis. The cameras in
the 3D-Room and Virtualized Reality are synchronized usingriBck,” the most com-

mon off-the-shelf solution for camera synchronizationn®ek is an analog protocol that
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provides synchronization with coincident triggers, ndiitary timing, and is too costly
for inexpensive cameras. This is why the Dynamic Light Figidwer, constructed of
inexpensive webcams, is not synchronized.

The Stanford Multiple Camera Array provides accurate timwvith arbitrary phase
shifts between camera triggers using the FPGAs and dedichiek and trigger lines that
run through the entire array. The one root board in the aremerates its own 27MHz
clock and sends it to two children via CAT5 cables, which thefids the clock and send
it to two more children, and so on. The root board is identioahe other camera boards
except for the code in one GAL and a single jumper setting. A Bh each board uses
the system clock to generate duty-cycle corrected, 27MidzZdMHz clocks. The MPEG
encoders require a 27MHz clock, but we run the microproecesaad FPGAS twice as fast
to maximize their performance.

The clock is not used for data transmission between boaoddelsly from camera to
camera is unimportant. The shared clock only ensures tHaaalds are frequency-locked.
It is possible that the duty cycle degrades with each bunfeaf the clock, but the board
components require a 45%55% duty cycle. This is one reason the cameras propagate a
27MHz clock, then double it on the board with a PLL. Preseg\hne 27MHz duty cycle is
also easier because the period is twice as long, and the Furesia 50% duty cycle on the
processing boards. Propagating the system clock usingienalidepth binary tree routing
topology preserves the duty cycle by ensuring a bound gfNolgops from the root board
to any camera, as opposed to N-1 for a daisy-chained systenaldd' invert the sense of
the clock each time it is buffered, so systematic duty cyffieets in the clock propagation
circuitry are roughly cancelled. In practice, this systeonrkg quite well. The maximum
depth of our tree for a 100 camera array is eight levels, antlave tested daisy-chained
configurations with more than 16 cameras with no problems.

Frequency-locked system clocks prevent our cameras fraftingrrelative to each
other. The FPGAs on each board generate vertical and htsizeynchronization signals
for the image sensors and the MPEG2 encoders. The encodeatlyadrive the system
timing because their requirements are very exact—NTSGgrbased on a 525 line-per-
image video with a 27MHz clock. The FPGAs timing units run thege sensors and
MPEG encoders at exactly the same frame rate. With a comnstems\clock, this means
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that all the sensors and encoders run at exactly the samesfreg

Synchronization is more than just preventing frequencit.dWe also need to set the
relative timing of the cameras’ exposures and the frame aatwthe cameras start and stop
capturing video. The timing of IEEE1394 transfers, esghcfeom multiple networked
PCs, is simply too uncertain for the accuracy we need in ouesysso | put that control
directly into our hardware. The same CAT5 cables that careyclbck transmit global
triggers from the root board to the rest of the array. Thegeads route directly to the
FPGAs on the boards. They control the initial synchrontrabr staggering of the sensor
shutter timing and the frame-accurate start of all videeastring or snapshots.

Video timing initialization is a good example of how to exeetiming-sensitive com-
mands for the camera array. The FPGASs use two video coumiehsve the vertical and
horizontal inputs of the image sensors and MPEG2 encodéespiXel counter rolls over
when it reaches the number of pixels in a line, causinditieecounter to increment. The
line counter rolls over at 525 lines, signaling a new framac®these counters have been
initialized, they run without drift across the entire artagcause of the common system
clock. The reset values for the line counters is a progranenagister on the FPGA,
accessible via an IEEE1394 command to the board.

To set up arbitrary time shifts between cameras, we progiffereht values into the
line counter reset registers, send a command which insttiietboards to reset their coun-
ters on the next rising trigger signal, and then tell the tmmdrd to assert the trigger. All
of the setup for all boards is done using IEEE1394 reads artdsybut the order to reset
their timers, which must be executed at the same time by alecas, is sent just to the root
board. The root board then asserts the trigger signal foenliee array. The inaccuracy of
the camera synchronization is limited to the electricahggiropagating the trigger to all
of the boards. For the 100-camera array, this is less thams] 50 roughly the time to scan
out four pixels from the image sensor.

3.3.4 Developer Interface to the Boards via IEEE1394

A flexible mounting system and low-level camera control mialeasy to experiment with
different applications, but we also need a developmenteniient that facilitates adding
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new features to the cameras. | took advantage of the IEEEfi@940 make prototyping

quick and easy. After power-up or a board reset, the Coldfieeuwes simple boot code
which configures the microprocessor memory and the IEEEX@®@4face. The host PC
then downloads FPGA bitfiles and a more sophisticated Coldkegutable from the PC
via IEEE1394. Adding new camera features is just a matteoofgling these new files

and does not require modifications to the physical hardwage frogramming GALs or

boot ROMs). This is critical for an array of 100 cameras.

A simple bootloader and downloadable executables anddsitfilakes iterating design
changes easy. Other goals for the design environment wémgtement as much as pos-
sible on the host PC using a familiar C development envirarimeeep the downloaded
executable simple, and expose as much of the camera stadesalslg to the user. Once the
final executable has been downloaded, the important staecimcamera is mapped into its
IEEE1394 address space. Using standard IEEE1394 readsraes, wne can access the
full 32MB of DRAM attached to the processor, all of the contregisters in the MPEG2
encoder and IEEE1394 chipset, configuration registersranogied into the FPGA, and
control registers for the cameras themselves. This keepdateloper API for the array
simple—just IEEE1394 reads and writes—and makes it easgt& the state of the board
(what has been programmed into registers in the FPGA, imagsos, MPEG encoder)
from the host PC application.

3.3.5 Image Processing on the FPGA

Raw image data from the cameras almost always need to be peaclesfore they can be
used. With this in mind, | designed the cameras for reasenatst with as powerful an
FPGA and as much associated memory as | could. As one exaifrple potential of the
FPGA, we have implemented Bayer demosaicing of the raw selasaiusing the Adaptive
Color Plane Interpolation algorithm of [39]. This method deeccess to five adjacent
lines of raw image data, meaning the FPGA must buffer folediof the image. Rather
than use the external memory, we use built-in BlockRAMs on theertan-1l. These RAMs
can be used for FIFOs with up to 511 entries, so for this exensie processed only 510-
pixel-wide images. We have also implemented arbitrary ggdmwarps for color images
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using lookup tables with eighth-pixel accurate coordisated bilinear interpolation. We
currently use this for keystone corrections so we can viegvdiynthetic aperture video.

3.3.6 Limits due to IEEE1394 Arbitration

The maximum isochronous (streaming) data transfer ratéEl6E1394 is 320Mb/s. The
standard method for streaming data from many different IEX2# devices is to assign
each one a different isochronous channel number and a fixembmpof the bandwidth
in each 1394 cycle, but this turns out to be a poor strategye @avice streaming data
can achieve the maximum rate, but with many nodes, arlatratverhead will reduce the
maximum bandwidth. Devices must arbitrate before evergtismnous packet is sent, and
arbitration takes longer with more nodes because signass pnapagate from all nodes up
to the root and then back. Moreover, each IEEE1394 packethals an overhead of three
guadlets (four bytes each) to describe the packet (dat#hgisgchronous channel number,
data correction, and so on).

For an MPEG data rate of 4Mb/s (the default for our encodees)h camera must trans-
fer 66 bytes every 125us isochronous cycle. IEEE1394 paekgths must be multiples of
four, meaning each camera must be configured to stream @8sbgkets. Adding twelve
bytes for packet overhead produces an 80-byte packet. At BIhs80-byte packets would
fitin the maximum of 4096 bytes per cycle. After arbitratiarethead, we have found that
we can stream only 26, 4Mb/s cameras reliably. We have venifieh an IEEE1394 bus
snooper that arbitration overhead is indeed the culpritgareng more packets on the bus.

Streaming such small packets each cycle from every camedapes a data file on the
host PC that is very fragmented and thus hard to processrdPnsgnust scan through the
data 80 bytes at a time to look for data from a specific camexdixThis difficulty and the
overhead issues, we attempted to implement an isochroremsfér scheme in which each
camera sends a full 4096-byte isochronous packet every Msyd&ach camera counts
isochronous cycles using the cycle done interrupt from BEteH1394 chipset. Access to
the bus passes round-robin through the array, and eacha#&mesponsible for attempting
to send data only on its dedicated cycle.
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We cannot implement this scheme with 4KB packets becauseawedone-cycle un-
certainty in our control over the IEEE1394 bus. Instead, atdlse cameras to transmit a
2KB packet on their designated cycle. If a camera is late go@nd transmits at the
same time as its successor, the data will still fit in the cyrid no errors will occur. This
optimization makes real-time applications much easierragrhenting the data less and
slightly increases the number of cameras we can streamtsin@alusly on the bus. We are
still investigating what is necessary for cycle-accuratetml of the isochronous interface.

3.3.7 HostPCs

Given the limit of roughly thirty cameras per IEEE1394 bu3) tameras require multiple
IEEE1394 buses. At this point, we run into another limit on data transfer bandwidth—
the 33MHz PCI bus in our computers. The IEEE1394 adaptor is alBite, and transfer-
ring data from it to our hard drives requires two PCI transfeng from the adaptor to main
memory, and a second to the hard drives. The transfers ar®ibd#-assisted, but here the
role of the DMA is just to free the processor, not to reduce R@GIlmlandwidth. The max-
imum theoretical bandwidth for 33MHz PCI is 133MB/sec, but thaximum sustained
data transfer rate is much less. An aggressive estimateMB&Imeans we are limited to
one IEEE1394 bus per computer. Thus, we need one computevdoy thirty cameras.

The currentl implementation of the array with one hundradeas uses four host PCs
which each manage a separate IEEE1394 bus. We run a copyat#lyesoftware on each
PC using a client/server setup where the server is the PCGecteuhto the root board of the
array. The server issues all commands for downloading ¢ablas and code, setting up
timing, programming registers on the image sensors, recpMPEG2 compressed video,
uploading stored snapshots of raw images, and so on. Theconfynand that cannot
always be run from the server is viewing live uncompressel@wifrom the cameras—
rather than trying to send live video across the network fRto PC, raw video is always
viewed on the host PC for a given camera’s IEEE1394 bus. Wa D388V switch to access
all of the machines from one keyboard and monitor.

The host PCs have been optimized for our applications but@sesomewhat out-of-
date. They use IEEE1394 PCI cards and striped IDE hard diovesite incoming video
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to disk as fast as it arrives. The PCs run RedHat Linux usingxtperenental IEEE1394
drivers, with one modification. The IEEE1394 specificatitloves up to 64 isochronous
channels on a bus, but the Linux drivers currently suppoly éour. Each camera in
our system needs its own isochronous channel, so | modifeeditivers to support the
full 64 channels. Without this capability, our cameras vdoldive to stream on the same
isochronous channel and insert the camera number into @ higeglery streaming packet.
More importantly, we would have to schedule the camera datster explicitly instead of
relying on the IEEE1394 chipsets.

3.3.8 Design Environment

The choice of operating systems and design environmentbea@matter of taste and is
not critical to the performance of our architecture. | wolike to briefly mention some
choices that turned out to be both inexpensive and powexrful,to acknowledge some of
the open source software tools that made our work easier.d@cision that worked out
well was using Jean LabrossggC/OS-I1l real-time operating system for our embedded
microprocessors. The operating system is light-weighteasily ported. It costs a mere
$60 and comes with a book that describes every line of the.code

Linux was helpful because the open source community deedig@me useful re-
sources early. We used a cross-compiler for Linux and Colgfioeessors provided by
David Fiddes (http://sca.uwaterloo.ca/www.calm.hwiktavidf/coldfire/gcc.htm). At the
time when we were doing most of the embedded processor cda2ig,s8pported remote-
debugging for the Coldfire using the Background Debug Mode, puantle inexpensive
Windows tools for the Coldfire did not. More information on @eldfire MCF5206E and
its Background Debug Mode can be found at [40]. Debugging owrezlded IEEE1394
drivers and the application running on the host PCs was musiereim Linux because
we could step through source code for working applicationsee how our devices were
expected to behave and how other applications accessedshe b

Open source code was critical for getting isochronous stigg working with more
than four cameras. At the time, Windows did not yet have |IEEH1drivers (this was
before Windows 2000), and some commercial IEEE1394 drigiers ot even implement
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Figure 3.7: The Stanford Multiple Camera Array

isochronous transfers, let alone streaming from many no#festunately, access to the
source code for the IEEE1394 drivers allowed me to implentteatdriver modifications
described earlier that allowed DMA transfers from PCl IEEE4adaptors to main mem-
ory from multiple isochronous channels. For many aspectSisfroject, we were able to
leverage the work of others to get our machinery running soon

3.4 Final Specifications

Figure 3.7 shows the Stanford Multiple Camera Array set upviidely spaced configura-
tion. This photograph shows 125 cameras, but we have onlgdg®@ras up and running.
Aside from that detail, the system as shown is accurate. a@heeras run off four PCs,
one for each of the blue cabinets holding the camera prowgésiards. The video and
images for the applications and analysis in the rest of tiesis were all acquired by this
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hardware or a subset of it in varying configurations. We caotwe up to two minutes of

video from all of the cameras. This rather artificial limitige to the 2GB file size limit of

our operating system, but we have not yet tried to capturgdoevents. The total cost of
the array is roughly $600 per board.

3.5 Future Work

As the rest of this thesis will show, we have used the arrayanywifferent configurations
for several different purposes. These experiences haviifidd areas of the array that
could use improvement. | will briefly discuss them here befmoving on to the applica-
tions.

Mounting and aiming cameras is by far the most time-consgnask for reconfiguring
the array. The mounting system is flexible, but very laboensive. A simple mechanical
mount that snapped in place would be nice, as would one tlated electronic control
over the camera pan and tilt. One simple but useful additionlevbe an LED on the front
of each camera. For any new camera configuration, we neecemtifid which is which
before we can start aiming them. Right now, we identify casénatrial and error, but
we have fabricated a new set of camera tiles with an LED thaintead illuminate from
the host to make manually or even automatically mappingadngeca layout much simpler.
Once we have identified cameras, we can track them using ei2gion the processing
boards that can be queried from the host PCs. The detachatderddes do not have
IDs. If they did, we could also just label the tiles with thiErand manually determine the
camera layout. Unique camera IDs might prove useful latekéeping records of sensor
radiometric properties.

The sensors in the camera array have an electronic rollintgeshanalogous to a me-
chanical slit shutter. In chapter 5, | discuss the electroailing shutter, the distortions
it introduces for fast-moving objects, and how to partialercome them. Interactions
between the shutter and geometric calibration make it isiptesto completely overcome
the artifacts. Furthermore, synchronizing the camerah different illuminators is not
possible. If | were to design the array again, | would use @ensith snapshot shutters.

The array has one hundred synchronized video cameras, batsiogle microphone.
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Synchronizing one or more microphones with the array wouldbée more interesting
multimedia content.

Finally, this camera array design is now several years oldsel four PCs to capture
the video data, but it might be possible now to use one molktgssor PC with dual PCI-X
buses to single-handedly capture all of the array data. Giyrany real-time application |
would like to implement must account for only one quartethefarray data being available
on any one machine. Running the entire array of one host wouttidi and also eliminate
all of the network synchronization in our host PC softwareastEr processor buses like
PCI-X are only one way that technologies are improving. If revo redesign the array
today, | could build it with more efficient video compressi@thnologies like MPEG-4
and new alternatives for high-speed buses, notably 800 MEE1394b and USB 2.0. As
data transfer rates increase, new arrays could exploitangonents in inexpensive image
sensors to capture video with greater resolution and higgreamic range.



Chapter 4

Application #1: Synthetic Aperture
Photography

Synthetic aperture photography (SAP) is a natural use fargelcamera array because it
depends on a large number of input images. As we will see, SARO a good starting ap-
plication because although it requires accurate geontnera calibration, it is relatively
forgiving of radiometric variations between cameras. Tdst of this chapter describes the
synthetic aperture method in detail and explains how we gdacally calibrate our cam-
eras. | show results using the array to create synthetic¢uapgrshotographs and videos of
dynamic scenes, including a demonstration of live SAP vigb interactive focal plane
adjustment that takes advantage of the processing power icemeras.

4.1 Description of the Method

The aperture of a camera determines its depth of field and haelfight it collects. Depth
of field refers to the distance from the focal plane at whicjects become unacceptably
out of focus in the image. This could be the point at which tlue is greater than one pixel,
for example. The larger the aperture, the narrower the defifield, and vice versa. This
can be exploited to look through partially occluding obgddte foliage. If a camera with a
very large aperture is focused beyond the occluder, obgd¢tee focal depth with be sharp
and in focus, while the objects off the focal plane will berbéd away. Although only a

43
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portion of the light from the object of interest penetrates toreground partial occluder,
their contributions all add coherently when focused by #reslon the image plane. The
result is an image of the object with reduced contrast.

Rather than actually building a camera with a one meter widetage, synthetic aper-
ture photography samples the light entering the effecipegtare using an array of cameras.
Levoy and Hanrahan pointed out that using a camera with angiperture size, it is pos-
sible to simulate images taken with a larger aperture byagweg together many adjacent
views, creating what they call a “synthetic aperture” [Sjaksen, et al. created a synthetic
aperture system using less dense camera spacings [6]. Beibeysused a single trans-
lating camera to capture images for their experiments, e limited to static scenes.
They showed with synthetic data that they could see throlbggcts in front of their focal
surface. We are the first to use a camera array to create sigrdperture photographs and
videos.

Figure 4.1 shows how a basic lens works. Light from a focah@lan the world is
focused by the lens onto an image plane in the camera. If &atbppresented by the
dashed line, is placed in front of the focal plane, the lighiking a given point on the
image plane comes from a neighborhood on the object and mosiogle point, causing
blur. As the object moves farther from the focal plane, the iicreases.

Figure 4.2 shows how a smaller aperture cuts out rays fronpéhiphery of the lens.
Eliminating these rays decreases the area on the objectrdveh we collect light for a
given point in our image, meaning the object will look lessrb} in the image. The depth
of field has increased—the object can be farther away fronfab& plane for the same
amount of blur. Conversely, a very large aperture will result very small depth of field,
with object rapidly becoming out of focus as their distarmoerf the focal plane increases.

As depicted in figure 4.3, synthetic aperture photograplgytally simulates a wide
aperture lens by adding together the appropriate rays froftipie cameras. The camera
array and processing digitally recreate the function oléins by integrating the light from
rays diverging from a point on the focal plane and passinguitin the synthetic aperture.
To do this, we need some form of geometric calibration to rdeitee which pixels in our
images correspond to rays from a given point on the focalgplan
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Focal Plane Image Plan

Figure 4.1: A basic lens system. Rays leaving a point on thal folane are focused by
the lens onto a point on the image plane. For an object (repteg by the dashed line) off
the focal plane, rays emanating from some patch of the svf@tbe focused to the same
point in the image, causing blur.

Focal Plane Image Plan

Figure 4.2: A smaller aperture increases depth of field. Raskgect off the focal plane,
the smaller aperture means light from a smaller area of tiextd surface will reach the
image plane, reducing blur.
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Focal Plane Image

Figure 4.3: A synthetic aperture camera uses many camersasriple the light crossing
the synthetic aperture. It then digitally simulates a lepsnibegrating measurements for
light arriving at the cameras from the same point on the dddwcal plane.

4.2 Geometric Calibration

The degree of calibration required for synthetic aperturetpgraphy depends on the de-
sired focal surfaces. As Isaksen et al. [6] note, synthgictare photography is not limited

to a single focal plane—one could create an image with @ifferegions focused at differ-

ent depths, or use curved or otherwise non-planar focasest Arbitrary surfaces require
full geometric camera calibration—a mapping from pixeldtons in each image to rays
in the world. If we restrict ourselves to sets of paralleldbplanes (similar to a regular

camera), then much simpler calibration methods suffice Hére, | review camera mod-

els and geometric camera calibration, then explain thelsmmographies and plane +
parallax calibration we use for synthetic aperture phapgy and the other multi-camera
applications in this thesis.

4.2.1 Full Geometric Camera Calibration

Full geometric camera calibration determines how the thiseensional(X,Y,Z) “world
coordinates” of a point in our scene map to the two-dimeraigxy) pixel coordinates
of its location in an image. In practice, this is done usingathamatical pinhole camera
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Figure 4.4: The pinhole camera model. The image of a worldtpsiat the intersection of
the image plane with the line joining the point and the cancerder.

model [41], shown in figure 4.4. The image of a world point ishet intersection of the
image plane with the line joining the camera center and thedwmoint. This operation
is called a “projection,” and the camera center is also knawthe “center of projection.”
The line passing through the camera center and perpendtoulae image plane is called
the “principal axis.” The intersection of the principal sxand the image planp, is called
the “principal point.”

The pinhole camera model is divided into the intrinsic antliesic parameters. The
intrinsic parameters relate the location of points in theee’s coordinate system to image
coordinates. In the camera’s coordinate system, the caceetar is the origin, the-axis
is the principal axis, and theandy axes correspond to the image planendy axes, as
shown (the image planeandy axes are assumed to be orthogonal). In these coordinates,
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Figure 4.5: Pinhole camera central projection. In camemadinates, the mapping from
any point to its projection on the image planéxsY,Z) — (fX/Z,fY /Z)

the mapping from any point to its projection on the image plssimply
(X,Y,Z) — (tX/Z,fY/Z)

Here, f is the focal length, the distance from the camera centeretantiage plane. Figure
4.5 shows this in one dimension.

The projection just described gives tt¥,Y) coordinates of the projection of a point
onto the pinhole camera image plane. To relate this to imagedmates, we first need to
divide these coordinates by the pixel size. Equivalently,can express the focal length
f in units of the pixel size. To account for the shift betweea ({0 0) image coordinate
(which is usually at the bottom left corner of the image) amelimage of the principal axis
(which is roughly in the center), we add a principal pointseff(py, py). This gives the
mapping

(X,Y,Z) — (tX/Z+ px, TY/Z+ py)

The extrinsic properties of a camera, or its “pose”, degcitblocation and orientation
in world coordinates. Mathematically, it is a transforrmatibetween world and camera
coordinates. If the camera centerds and the rotation matriR is a 3x3 rotation matrix
that represents the camera coordinate frame orientati@m, @ world coordinat& g
maps to camera coordinat¥g,m, according to

xcam - R(Xworld - C)
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Lettingt = —RC, this can be expressed more simply as:

Xcam = RXWorld +t

The extrinsic parameters for the pinhole camera model havaegrees of freedom—
three for the translation and three for the rotation matriX. Although the matrix has nine
entries, there are only three degrees of freedom, corregppio roll, pitch and yaw. The
intrinsic properties of the camera have three degrees etitnm: the focal lengtt, and
the location of the principal poir(ix,,yp). More general camera models that account for
non-square pixels will use two focal lengttfg and fy, to express the focal lengths in terms
of the pixel width and height. Finally, the most general mesdaell also include a “skew”
parametes that accounts for non-orthogonal image axes. This will ragigen for normal
cameras, so this parameter is usually zero. Negledivge now have a ten degree of
freedom model that relates world coordinates to image ¢oatels by transforming world
to camera coordinates, then projecting from camera to imagedinates.

Configuring cameras to exactly match a specific camera modedady impossible,
S0 in practice one always sets up the cameras and then taditireem to determine the
model parameters. Much work has been done on how to calibeateeras from their
images. Early approaches used images of a three-dimehsalitaation target [42, 43].
The calibration targets have easily detectable featukestHe corners of a black and white
checkerboard pattern, at known world coordinates. Zhawgldped a method that requires
multiple images of a planar calibration target [44]. Plateagets are more convenient
because they can be easily created using a laser printeof &lese methods attempt to
minimize the error between imaged feature coordinates aodimates predicted from the
model.

To perform full calibration for our array, we use a methodaleped by Vaibhav Vaish
that extends Zhang's method to multiple cameras [45]. Ashari)’s method, the input
to the calibration is multiple images of a planar target vidtlown two-dimensional coor-
dinates in the plane. Vaish has developed a very robustréedeiector that automatically
finds and labels the corners of squares on our target. Tygasalts for the feature detector
are shown superimposed on an image of the target in figureTh&target is designed to
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Figure 4.6: Our robust feature detector automatically atetand labels feature points on
our calibration target.

have uniquely identifiable features even if the entire taig&ot visible, a common oc-
currence for our large array. Using the target-to-imagesspondences, we get an initial
estimate of the camera model parameters by independefitlyateng each camera using
Zhang'’s method. This estimate is used to initialize a n@amoptimization (bundle ad-
justment) that solves for all parameters simultaneously typically get an RMS pixel
projection error of 0.3 pixels with this method.
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4.2.2 Planar Homographies

Full geometric calibration for an array of one hundred camearan be quite challenging.
For many uses of the array, being able to reproject images fn@ image plane to some
other plane in the world is sufficient. Synthetic aperturetpgraphy, for example, only
requires a mapping from the focal plane to the camera imam®eepl Similarly, the two-
plane parametrization used in light field rendering alignages from all views onto a
common object plane [5]. Some approaches to multi-viewestatso use a space-sweep
framework, once again aligning camera images to planesiwthld [46, 47].

The mapping between planes is defined by a projection throluglcamera center.
Corresponding points on the two planes lie on a line passir@tjih the camera center.
This relationship, called a 2D projective transformatiompl@anar homography, can be de-
scribed using homogeneous coordinates as a 3x3 matrix Vgt degrees of freedom
[41]. Furthermore, it can be computed independently foheaenera directly from image
measurements, with no knowledge of the camera geometmyrd=-#§7 shows a typical use
of a planar homography to align images to a reference viethisrexample, we determine
the mapping directly by placing our planar calibration &rgn the plane to which we will
align all images. To create a synthetic aperture image &tos the plane of the target,
we simply add the aligned the images from all cameras.

4.2.3 Plane + Parallax Calibration

For many applications, aligning images to a single planessfficient. For example, we
would like to focus at different depths for synthetic apegtphotography, or select different
object planes for light field rendering, without computingeav set of homographies. This
can be done using “plane + parallax” calibration. Althoulgé projections could be com-
puted using full geometric calibration, for planar camemays and fronto-parallel focal
planes, plane + parallax calibration is simpler and moresof¥].

To calibrate using plane + parallax, we first align imagesifiadl of our cameras to a
reference plane that is roughly parallel to the camera plake do this as before, using
images of a planar calibration target set approximatelgtérgparallel to the camera array.
We designate a central camera to be the reference view amultersn alignment for it that
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€Y (b)

Figure 4.7: Alignment using planar homographies. Usinggesaof a planar calibration
target, we compute a planar homography that aligns eacheittag reference plane. (a)
shows an image of the target from a corner camera of the glsaghow the same image
warped to the reference view. The planar target appeartofmarallel in all of the aligned

images.

makes the target appear fronto-parallel while perturbinegiinaged target feature locations
as little as possible. We then compute planar homographéstign the rest of the views
to the aligned reference view [41]. At this point, all our iges are aligned to a reference
view as in figure 4.7.

In the aligned images, there is a simple relation betweeni'palistance from the
reference plane and its parallax between two views. FigilesHows a scene poiRtand
its locationspg = (So,t0)", p1 = (s1,t1)T in the aligned images from two camei@g and
C,. LetAz, be the signed distance from P to the reference plane (nedatithis example),
Zo be the distance from the camera plane to the reference @adAx be the vector from

Co to C; in the camera plane. Define theative depth of P to bed = Azi%zo. Given this
arrangement, the parallép = p; — po is sSimplyAp = Ax-d.

This has two important consequences:

e The parallax between aligned images of a single point offréference plane is
enough to determine the relative locations in the camersepdd all of the cameras.
This is the heart of the plane + parallax calibration methigghically, one measures
the parallax of many points to make the process more robust.

e Once we know the relative camera locations, determiningelagive depth of a point
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Figure 4.8: Planar parallax for planar camera arrays. Atgdimot on the reference plane
has distinct imagepo, p1 in camera£y,C;. The parallax between these two is the product
of the relative camera displaceméntand the relative depthzp,.

in one view is enough to determine its location in all othews. We will use this
later for spatiotemporal view interpolation.

Plane + parallax calibration plays a major role in most ofdpelications in this the-
sis. We use it in synthetic aperture photography to eastydat different depths. Once
we have aligned images to a plane at one depth, we can credteesy aperture images
focused at other depths by translating the images by somtgpiewdf the camera displace-
ments. For high speed videography, we align images fromf @locameras to one focal
plane, and plane + parallax describes the misalignmentsewe will see for objects not
on that plane. Finally, the spatiotemporal view intergolaimethod uses plane + parallax
calibration to estimate scene motion between images freerakdifferent cameras.

4.3 Results

The synthetic aperture images and videos | present in tlapteh were enabled by our
capture hardware and geometric calibration methods. Becaasaverage images from
all cameras to create each synthetic aperture image, strg@amapture from all cameras
was essential for the videos. For any dynamic scene, theraarhad to be synchronized
to trigger simultaneously. Many of these images and videesevproduced using full
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Figure 4.9: Synthetic aperture sample input images. Bedese images are averaged
together, the obvious color variations will have littleexft on the output images.

geometric calibration, before we knew that plane + parallaxld be simpler and more
effective. Regardless, they show that we can effectivelylioenthe data from all of our
cameras.

For synthetic aperture experiments, we use a setup simithettightly packed arrange-
ment in figure 3.4. The cameras are mounted on 80/20 bars wiglffective aperture that
is one meter wide and slightly less than one meter tall. Usisgtup similar to the one
shown but with only 82 cameras, we took a snapshot of a scetheawpartially occlud-
ing plant in the foreground. Three example input images ho#a in figure 4.9. Figure
4.10 shows a sequence of synthetic aperture images creatadHis dataset. The focal
plane starts in the conference room behind the plant andmsaew/ard the camera. Note
the different portions of the image in focus at differentdbdepths, and how the face of
the person hiding behind the plant is revealed even though mgut camera could see
only tiny portions of his face. We also have the option of exdiag our results with stan-
dard image processing techniques. In figure 4.11, we haypewout the face from the
fourth image in the synthetic aperture image sequence amaherd the contrast. Despite
having a plant between all of our cameras and the personabesi$ now clearly visible
and recognizable (assuming you know Professor Levoy!)s Ehust the beginning of the
possibilities of digitally improving our results. Isaksenal., for example, mentioned the
possibility of implementing passive depth-from-focus aeghth-from-defocus algorithms
to automatically determine the depth for each pixel.

Of course, we are not limited to synthetic aperture photagya We have also used
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Figure 4.10: Sweeping the synthetic aperture focal planethis sequence of synthetic
aperture images, the focal plane is swept toward the camexga @bjects visible at one
focal depth disappear at others, allowing us to clearly keeperson hiding behind the
plant, even though he was mostly occluded in the input images
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Figure 4.11: A synthetic aperture image with enhanced ashtr

Figure 4.12: Synthetic aperture video sample input images.

the array to create the world’s first synthetic aperture esdef dynamic scenes. Using the
same setup as before, we streamed synchronized, 4Mb/s MIRIEG from all cameras to
disk. The scene is three people walking behind a dense wathes. Three sample images
from different cameras at the same time (with a person bethiad/ines) are shown in
figure 4.12. These images actually make the situation seasewioan it really is. Viewing
any one input video, one can tell that people are moving laetiia vines, although it is
not possible to tell who they are or what they are doing. | hagkided an example input
video, sapvideoinput.mpg, on the CD-ROM accompanying tiesis.

The resulting synthetic aperture video is also on the CD-R@bEkled sapvideo.mpg.
In it, we see the three people moving behind the wall of vimesssome of the objects they
are carrying. Example frames are shown in figure 4.13.
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Figure 4.13: Frames from a synthetic aperture video.

The results presented so far have been generated off-libnérosurveillance applica-
tions, we would like to view live synthetic aperture videoilghnteractively sweeping the
focal plane. Using plane + parallax calibration, we can gwike focal plane back and forth
by translating the keystoned images before we add themitegéthis is the first real-time
application we have implemented with the array, and thedestonstration of the value of
using the FPGAs for low-level image processing. InsteadheRCs warping and shifting
all the images, the cameras perform these operations itiggdvafore compressing and
transmitting the video. The FPGA applies the initial honagy using a precomputed
lookup table stored in its SDRAM, then shifts the warped imbgfore sending it to the
MPEG compression chip. The PCs decode the video from eachraaadd the frames
together, and send them over a network to a master PC. Therreasis the images from
the other PCs and displays the synthetic aperture video.

The video livesap.avi on the companion CD-ROM demonstréiesst/stem in action.
It shows video from one of the cameras, a slider for intevaitichanges the focal depth,
and the synthesized SAP images. Figure 4.14 has exampleimages and SAP images
from the video. The input frames show the subject we aregriorirack as people move in
front of him. In the synthetic aperture images, we are abbajast the focal depth to keep
the subject in focus as he moves toward the cameras. Thedauglioreground people are
blurred away.

At the time when this was filmed, we had only implemented mbname image warps
on the FPGAs. We can now warp color images, too. The performanttleneck in the
system is video decoding and summation on the PC’s. Althohglcameras can warp
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(b)

Figure 4.14: Live synthetic aperture video. (a) Frames fame of the input cameras,
showing the subject to be tracked as people move in frontrof iib) The corresponding
synthetic aperture images. We interactively adjust thalfptane to keep the subject in
focus as he moves forward.

images at the full 640 x 480 resolution, we configure the MPEG&bders to send 320 x
240 I-frame only video to the PCs. At that resolution, the P@soagture, decode and add
15 monochrome streams each at 30fps. Because the I-framesmag DCT-encoded, we
hope to add one more optimization: adding all of frames togieih the DCT domain, then

applying one IDCT transform to get the final SAP image.

The enhanced contrast example from before hints at thelplitsss of digitally im-
proving synthetic aperture photographs. Synthetic apextgleo allows even more possi-
bilities for enhancing our data because we can exploit timauhyc nature of the scene. For
example, suppose we have for each input image a matte igiegtjfixels that see through
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(b)

Figure 4.15: Synthetic aperture with occluder mattes. (apdular synthetic aperture
image, averaged from all aligned input images. (b) Eachl pixénis image is the average
of only the corresponding input image pixels that see thinahg occluder. The contrast is
greatly increased because the occluder is eliminatedadsieblurred.

the foreground occluder. If instead of averaging pixelsfial images to generate the syn-
thetic aperture image, we average only those that see tlkgtoamnd, we can eliminate the
occluder instead of blurring it away. For a static occlutiegre are many ways to generate
these mattes. For example, we could place a black surfadgedotte object, then a white
one, and record which pixels change.

Figure 4.15 shows an experiment using another approachkhmgaall of the pixels
which never change during the recorded video. These pixetespond to the static parts
of the video, either the background or the occluder. In ractve use a threshold so we
do not confuse image noise with unoccluded pixels. The intagéhe left is the usual
synthetic aperture image. On the right, each pixel is theaaesof only the unoccluded
pixels in the input images, and the image contrast is muchidagal. The missing pixels
are ones in which no camera saw through the foreground,ngptiianged during the video
segment, or the changes were below our threshold.

Pixels that contain a mixture of foreground and backgrowidrs will corrupt the mat-
ted results, and we can expect that our Bayer demosaicingviik poorly for background
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colors unless the holes in the occluder are several pixale.wColor calibration also be-
comes an issue here. Regular synthetic aperture photographlatively insensitive to

the varying color responses of our sensors. The camerastasakie the images in fig-
ure 4.9 were configured identically, but show significaniateon. Because the data from
all the cameras are averaged together, the differencevaraged away. For the matting
experiment, if few values are averaged for a pixel, colorateims will have a greater ef-
fect. In the next section, we will look at an application wi¥en stricter color calibration
requirements: high-speed video capture using a dense aaray.



Chapter 5

Application #2: High-Speed
Videography

This chapter explains how we use our camera array as a haegdspdeo camera by stag-
gering the shutter times of the cameras and interleaving éfigned and color-corrected
images. Creating a single high-speed camera from the amayes a combination of fine
control over the cameras and compensation for varying geanand radiometric prop-
erties characteristic of cheap image sensors. Interlgawages from different cameras
means that uncorrected variations in their radiometriperties will cause frame-to-frame
intensity and color differences in the high-speed video.aBse the radiometric responses
of cheap cameras varies greatly, the cameras in our arraybawsnfigured to have rel-
atively similar responses, then calibrated so the remgidifierences can be corrected in
post-processing.

High-speed videography stresses the temporal accuracyeof anaged pixel, so we
must correct for distortions of fast-moving objects duehte &lectronic rolling shutter in
our CMOS image sensors. Rolling shutter images can be tho@igistdiagonal planes in
a spatiotemporal volume, and slicing the volume of rollihgitser images along vertical
planes of constant time eliminates the distortions. At tie @ the chaptor, | will explore
ways to extend performance by taking advantage of the urieptares of multiple camera
sensors—parallel compression for very long recordingd,exposure windows that span
multiple high-speed frame times for increasing the frante oa signal-to-noise ratio. The

61
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interaction of our geometric alignment with the electrorotling shutter causes timing
errors that can only be partially corrected.

5.1 Previous Work

High-speed imaging has many applications, including asislgf automotive crash tests,
golf swings, and explosions. Industrial, research andanyliapplications have motivated
the design of faster and faster high-speed cameras. Cuwrefitthe-shelf cameras from
companies like Photron and Vision Research can be found ¢catd 800x600 pixels at
4800fps, or 2.3 gigasamples per second. These devices usgleagmera and are typi-
cally limited to storing just a few seconds of data becaushehuge bandwidths involved
in high-speed video. The short recording duration meansattguisition must be synchro-
nized with the event of interest. As we will show, our systets lus stream high-speed
video for minutes, eliminating the need for triggers andrshecording times by using a
parallel architecture for capturing, compressing, andrsgdigh-speed video, i.e. multiple
interleaved cameras.

Little work has been done generating high-speed video frartipe cameras running
at video frame rates. The prior work closest to ours is th&hafchtman, et al. on increasing
the spatiotemporal resolution of video from multiple caa%ef48]. They acquire video at
regular frame rates with motion blur and aliasing, thenisgsize a high-speed video using
a regularized deconvolution. Our method, with better tgnaontrol and more cameras,
eliminates the need for this sophisticated processingpagih we will show that we can
leverage this work to extend the range of the system.

5.2 High-Speed Videography From Interleaved Exposures

Using n cameras running at a given frame rateve create high-speed video with an ef-
fective frame rate oh = nx s by staggering the start of each camera’s exposure window
by 1/h and interleaving the captured frames in chronological oféer example, using 52
cameras, we have30,n=52, andh=1560fps. Unlike a single camera, we have great flex-
ibility in choosing exposure times. We typically set the espre time of each camera to be
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Figure 5.1: An array of 52 cameras for capturing high-spegelos The cameras are packed
closely together to approximate a single center of praecti

1/h, 65Qus in this case, or less. The exposure duration for our Omaivisensors is pro-
grammable in increments of 2058, corresponding to four row times. Very short exposure
times are often light-limited, creating a trade-off betweequiring more light (to improve
the signal-to-noise ratio) using longer exposures, andaied motion blur with shorter
exposures. Because we use multiple cameras, we have the opeatending our expo-
sure times past/h to gather more light and using temporal super-resolutiohrtgues to
compute high-speed video. We will return to these ideas. late

Figure 5.1 shows the assembly of 52 cameras used for theseiregnmts. To align
images from the different cameras to a single reference, vieamake the simplifying as-
sumption that the scene lies within a shallow depth of a siogject plane. Under these
conditions, we can register images using planar homogeas described in section 4.2.
We place the calibration target at the assumed object pladepek one of the central
cameras in the array to be the reference view. Using autoatigtdetected feature corre-
spondences between images, we compute alignment homaggdphall other views to
the reference view.

Of course, this shallow scene assumption holds only foresc#mat are relatively flat
or sufficiently distant from the array relative to the camgpacing. Figure 5.2 shows the
alignment error as objects stray from the object plane. igahalysis, (although not in our
calibration procedure), we assume that our cameras aretboa a plane, their optical axes
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Object Plane

Alignment Error

Image Plane

Reference camera 2nd camera

Figure 5.2: Using a projective transform to align our imagasses errors for objects off
the assumed plane. The solid lines from the gray ball to eacteca show where it appears
in each view with no errors. The dashed line shows how the@dent incorrectly projects
the image of the ball in the second camera to an assumed qiigeet, making the ball
appear to jitter spatially when frames from the two camerademporally interleaved.

are perpendicular to that plane, their image plane axesaaedigl, and their focal lengths
f are the same. For two cameras separated by a distanoebject at a distansawill see
a disparity ofd = fa/sbetween the two images (assuming the standard perspeativra
model). Our computed homographies will account for exaittit shift when registering
the two views. If the object were actually at distargénstead ofs, then the resulting
disparity should bel’ = fa/s. The difference between these two disparities is our error
(in metric units, not pixels) at the image plane.

Equating the maximum tolerable ermmto the difference betweahandd’, and solving
for §' yields the equation

Evaluating this for positive and negative maximum errox@giour near and far effec-
tive focal limits. This is the same equation used to caleuthte focal depth limits for a
pinhole camera with a finite aperture [49]. In this instaroze,aperture is the area spanned
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| Focal Length| Focal Distance Depth of Field| Hyperfocal Distance

10m 0.82m

6.0mm 20m 3.3m 242m
30m 7.5m
100m 99m
10m 0.24m

20.0mm 20m 0.99m 809m
30m 2.2m
100m 25m
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Table 5.1: The effective depth of field for the 52-camerayafaa different lens focal
lengths and object focal distances.

by our camera locations. Rather than becoming blurry, objeftthe focal plane remain
sharp but appear to move around from frame to frame in theedigmages.

For our lab setup, the object plane is 3m from our cameras;aheera pitch is 33mm,
and the maximum separation between any two of the 52 came2slmm. The image
sensors have a 6mm focal length and a pixel size gi.2Choosing a maximum toler-
able error of +/- one pixel, we get near and far focal depthtéirof 2.963m and 3.036m,
respectively, for a total depth of field of 7.3cm.

Note that these numbers are a consequence of filming in a edni@boratory. For
many high-speed video applications, the objects of inteaes sufficiently far away to
allow much higher effective depths of field. To give an ideahoWw our system would
work in such settings, table 5.1 shows how the depth of fiedbdvgwith object focal depth.
It presents two arrangements, the lab setup with 6mm lerisesds described, and the
same rig with moderately telephoto 20mm lenses. The deptieldfgrows quickly with
distance. For the system with 6mm lenses and an object fagtaihnde of 10m, the depth
of field is already nearly a meter. The table also include®ffextive hyperfocal distance,
h, for the systems. When the object focal depth is skt tite effective depth of field of the
system becomes infinite. The motion in the aligned imaged obgcts farther thain/2
from the camera array will be less than our maximum tolerabier.

The false motion of off-plane objects can be rendered mushwisually objectionable
by ensuring that sequential cameras in time are spatigiycadt in the camera mount. This
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491750 4

47148 51| 3
44145749 52| 2 9110
43142141140 1| 13112111

371738739 27| 141151611
36{35| 33| 28| 26| 201918
34| 32| 29| 25| 22121
31-30| 24|23

Figure 5.3: The trigger order for our 52 camera array. Enguiat sequential cameras in
the trigger sequence are spatially adjacent in the arragesimime-to-frame false motion
of off-plane objects small, continuous and less objectitma

constrains the maximum distance between cameras from eneiwithe final high-speed
sequence to the next to only 47mm and ensures that the appao&ion of misaligned
objects is smooth and continuous. If we allow the alignmerdrdo vary by a maximum
of one pixel from one view to the next, our effective depth efdiincreases to 40cm in our
lab setting. Figure 5.3 shows the firing order we use for ourd&era setup.

5.3 Radiometric Calibration

Because we interleave images from different cameras, wxted variations in their ra-
diometric properties will cause frame-to-frame intensitd color differences in the high-
speed video. Because the radiometric responses of cheapasavaeies greatly, the cam-
eras in our array must be configured to have relatively stnésponses, then calibrated so
the remaining differences can be corrected in post-prowgss
Color calibration is essential to many view interpolatioml &gh-x algorithms. Light

Field Rendering and The Lumigraph, for example, assume that the camera images
“look alike’—the color and intensity variations betweerages are due only to the chang-
ing camera positions. Furthermore, most computationagingatechniques assume that
the camera responses are linear. Even expensive camarasafte nonlinear responses,
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so we must also find a way to linearize the sensor response. |koge camera array, these
calibration methods must be automatic.

Differences in the response of a camera’s pixels to incidieimiination from the scene
can be due to variations in the sensor’s response or to there&moptics. Here, | summa-
rize these sources of variation, review past efforts toraatecally radiometrically calibrate
camera arrays, and present methods for automatically esirfggand color matching the
array.

5.3.1 Camera Radiometric Variations

For a given incident illumination, a camera’s image sensor@tics determine its radio-
metric response. Process variations between sensorsgoibetween pixels on the same
sensor) lead to different responses at each step of thengpnagocess. The color filters for
single-chip color sensors, the photodetectors that daleay electrons generated by light
interacting with silicon, and the circuitry for amplifyirend reading out the values sensed
at each pixel all contribute to the variations between sensbhe CMOS sensors in our
array use “analog processing” for color space conversieghgamma adjustment, adding
more sources of variation unless these features are tufhed o

The optics on our cameras also cause variations in coloonsgp Cos* falloff and
vignetting, for example, cause images to get dimmer towtre®dges. Less strict man-
ufacturing tolerances for inexpensive lenses also leadfterehces in the amount of light
they gather. Global differences in the amount of light a Ipasses to the sensor are in-
distinguishable from a global change in the gain of the sersowe do not attempt to
calibrate our sensor and lenses separately. Furthermitieugh intensity falloff is cer-
tainly significant for our cameras, we have not yet attempoechlibrate it for our array.
Our experience so far has been that it is roughly similar foamera to camera and does
not strongly impact our algorithms.

5.3.2 Prior Work in Color Calibrating Large Camera Arrays

Very little work has been done on automatically radiometdhccalibrating large camera
arrays, most likely because big arrays are still rare. Sorstesis, such as the 3D-Room,
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do not color calibrate their cameras at all, leading to caltifacts [50]. Presumably the
automatic gain, offset and white balance controls for tkhameras produced acceptable
images, even if they varied somewhat between cameras. Yaag &und that the au-
tomatic controls were unreliable for their 64-camera afd®}, so they used the method
proposed by Nanda and Cutler for an omnidirectional muhisse “RingCam” [51].

The RingCam itself was a set of cameras with only partially leygring views, so the
color calibration relies on image statistics in the regidroeerlap between neighboring
cameras. Because this method is the only other one we know obfdiguring an array
of cameras, | will briefly describe it here before presentngmethods. In the notation of
Nanda and Cutler, for a camera with brightnbsand contrast, the relation between an
observed pixel valug(x,y) and the accumulated chard&, y) on the sensor at that pixel is

[(X,y) =b+cxi(X,y)

Their image sensors, like ours, have programmable gaingrésis) and offsets (bi-
ases). To configure their cameras, they first set the corftagiteir sensors to zero and
adjust the offset until the mean image value is some degdriflack value.” Once the
offset has been fixed, they vary the contrast to raise the nmeage value to some user-
selected level. Finally, they white balance their camegaBliming a white piece of paper
and adjusting the red and blue gains of their sensors usilrttages of the paper have
equal red, green and blue components. Their goal was realithage corrections, so they
did not implement any post-processing of the images fronn taneras.

Our color calibration goals are different from those of Namrd al. The RingCam had
to deal with highly varying illumination because their caagehad only partially overlap-
ping fields of view and were arranged to cumulatively spanlia3&0 degrees. For the
applications in this thesis, our cameras are usually on repdad verged to view a com-
mon working volume, so the ranges of intensities in the viawesmore consistent. The
RingCam was designed to handle dynamically varying illuniamaaind used blending to
mitigate residual color differences between cameras. ©alig to produce images that
require no blending. We fix our camera settings at the staghoh acquisition so we can
calibrate for a particular setting and post-process thg@sa&o correct for variations.
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5.3.3 Radiometric Calibration Method

Our calibration method ensures that all cameras view theesamge of scene intensities
and maximizes the usable data produced in each color chbgradl cameras so we can
process it later. It is described in detail in Neel Joshi'sskéds thesis [8]. We start by con-
figuring all of our cameras to match the same desired lineforfihe gray scale checkers
on a Macbeth color checker chart. Our image sensors areymghlinear near the top and
bottom of their output range, so we fit the response to a lioef20 (out of 255) for the
black patch (3.1% reflectance) to 220 for the white patchO®0reflectance). We itera-
tively adjust the programmable green, red and blue gain#adts on our sensors until
the measured responses match the line. Assuming the whdie igahe brightest object in
our scene, this ensures that we're using the entire rangacbf @lor channel and reduces
guantization noise in our images. This linear fit has the ddumefit of white balancing
our cameras.

To ensure that intensity falloff and uneven illuminationrdi cause errors, we take an
image with a photographic gray card in place of the checkartchVith no intensity falloff
and uniform illumination, the image of this diffuse gray@arould be constant at all pixels.
For each camera, we compute scale values for each pixeldhrattthe nonuniformity and
apply them to all image measurements.

Once we have automatically configured the cameras, we apaiglard methods to
further improve the color uniformity of images. The imagas® response is only roughly
linear, so we compute lookup tables to map the slightly maar responses of our cameras
to the desired line for the gray scale patches. Then we caT@x8 correction matrices
that we apply to théR, G, B) pixel values from each camera to generate correde@, B)
values. The matrices minimize the variance between medsataes for all of the color
checkers in the chart across all of the cameras in the array.

There are a number of ways one could automate this task. Weedbdeverage our
geometric calibration by attaching the color checker togrdmetric calibration target at
a fixed location and using homographies to automatically firelocations of the color
checker patches. With this method, we can robustly and ginaliometrically configure
and calibrate an array of 100 cameras in a matter of minutes.
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Figure 5.4: A color checker mosaic with no color correcti®his image was assembled us-
ing 7x7 blocks from different cameras and clearly shows #aiometric variation between
them, even though they are configured with identical expoand color gain settings.

Figure 5.4 shows an image mosaic of a Macbeth color checlket etade with no color
calibration. To make this image, we configured all of our ceamevith the same gains, took
pictures of the target and then applied the planar homogrdebcribed earlier to warp all
the images to one common reference view. We assembled tle@aimsn 7x7 pixel blocks
from different camera images. Each diagonal line of blockagonal from lower left to
upper right) is from the same camera. The color differencesasy to see in this image
and give an idea of the process variation between image iIenso

In the figure 5.5 below, we have used our color calibrationiin@s to properly set up
the cameras and post-process the images. Note that thedifdyences are very hard
to detect visually. This implies that we should be able to teotypes of mosaics and
IBR methods for combining images effectively, too. In queative terms, the RMS error
between color values for any two cameras was 1.7 for red salu@ for green, and 1.4 for
blue. The maximum error was larger, 11 for red, 6 for green&fat blue. Although the
perceptible differences in the resulting images are srthadlJarge maximum errors might
cause difficulties for vision algorithms that rely on ac¢areolor information. As we will
see in the next chapter, we have successfully use opticaldés&d vision algorithms on
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Figure 5.5: A color checker mosaic with color correction tekfcalibrating our cameras,
the color differences are barely discernible.

images from the array to perform view interpolation in spawd time.

Our radiometric calibration method has several limitagidimat might need to be ad-
dressed for future applications. The cameras must all esdime calibration target, pre-
cluding omnidirectional camera setups like the RingCam. Weatdandle dynamically
varying illumination, which could be a problem for less aolied settings. Although we
take steps to counter intensity falloff in the cameras armaundorm illumination of our
color checker when performing the color calibration, we dbmodel intensity falloff or
try to remove it from our images. Because falloff is similasrfr camera to camera, and
our cameras all share the same viewing volume, the effeetbad to perceive for our
applications. For image mosaicing to produce wide fielddefv mosaics, however, this
falloff might be very noticeable.

5.4 Overcoming the Electronic Rolling Shutter

For image sensors that have a global, “snapshot” shutten,asian interline transfer CCD,
the high-speed method we have described would be completea@gshot shutter starts and
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(@) (b)

Figure 5.6: The electronic rolling shutter. Many low-enchie sensors use an electronic
rolling shutter, analogous to an open slit that scans owiirttage. Each row integrates
light only while the slit passes over it. (a) An example of dajeat moving rapidly to the
right while the rolling shutter scans down the image plamg.Irf the resulting image, the
shape of the moving object is distorted.

stops light integration for every pixel in the sensor at thime times. Readout is sequential
by scan line, requiring a sample and hold circuit at eachl pixgreserve the value from the
time integration ends until it can be read out. The electroailing shutter in our image
sensors, on the other hand, exposes each row just beforesdsout. Rolling shutters
are attractive because they do not require the extra samglbad circuitry at each pixel,
making the circuit design simpler and increasing the filtda¢the portion of each pixel’'s
area dedicated to collecting light). A quick survey of Onision, Micron, Agilent, Hynix
and Kodak reveals that all of their color, VGA (640x480) Heson, 30fps CMOS sensors
use electronic rolling shutters.

The disadvantage of the rolling shutter, illustrated in ffigg6.6, is that it distorts the
shape of fast moving objects, much like the focal plane shutta 35mm SLR camera.
Since scan lines are read out sequentially over the 33msftame, pixels lower in the
image start and stop integrating incoming light nearly anedater than pixels from the top
of the image.

Figure 5.7 shows how we remove the rolling shutter distarti®he camera triggers
are evenly staggered, so at any time they are imaging diffeegions of the object plane.
Instead of interleaving the aligned images, we take scaes lthat were captured at the
same time by different cameras and stack them into one image.

One way to view this stacking is in terms of a spatiotempooéime, shown in figure
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ENAn i RSN Y

Figure 5.7: Correcting the electronic rolling shutter distm. The images on the left
represent views from five cameras with staggered shuttetsany time, different rows
(shown in gray) in each camera are imaging the object planest&king these rows into
one image, we create a view with no distortion.

y

A

(@) (b)

Figure 5.8: Slicing the spatiotemporal volume to corredlimg shutter distortion. (a)
Cameras with global shutters capture their entire imageeaséime time, so each one is
a vertical slice in the volume. (b) Cameras with rolling sargtcapture lower rows in
their images later in time, so each frame lies on a slantegepia the volume. Slicing
rolling shutter video along planes of constant time in thatispemporal volume removes
the distortion.

5.8. Images from cameras with global shutters are verticass(along planes of constant
time) of the spatiotemporal volume. Images from rolling tdllucameras, on the other
hand, are diagonal slices in the spatiotemporal volume.stha line stacking we just de-
scribed is equivalent to slicing the volume of rolling sleaimages along planes of constant
time. We use trilinear interpolation between frames to teréfae images. The slicing re-
sults in smooth, undistorted images. Figure 5.9 shows a adgsgn of frames from sliced
and unsliced videos of a rotating fan. The videos were filméH the 52 camera setup,
using the trigger ordering in figure 5.3.

The spatiotemporal analysis so far neglects the intemrattgiween the rolling shutter
and our image alignments. Vertical components in the algmrransformations raise or
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@) (b)

Figure 5.9: “Slicing” rolling shutter videos to eliminatéstbrtions. (a) An aligned image
from one view in the fan sequence. Note the distorted, nofowmn appearance of the
fan blades. (b) “Slicing” the stacked, aligned frames sad tbas in the final images are
acquired at the same time eliminates rolling shutter atisfa The moving blades are no
longer distorted.

lower images in the spatiotemporal volume. As figure 5.10ashsuch displacements
also shift rolling shutter images later or earlier in time. 8yering the trigger timing
of each camera to cancel this displacement, we can resterdetsired evenly staggered
timing of the images. Another way to think of this is that atieal alignment shift of
x rows implies that features in the object plane are imagedniyt x rows lower in the
camera’s view, but alse row timeslater because of the rolling shutter. A row time is the
time it takes the shutter to scan down one row of pixels. Bigg the camerarow times
earlier exactly cancels this delay and restores the intetiaeng. Note that pure horizontal
translations of rolling shutter images in the spatioterapeolume do not alter their timing,
but projections that cause scale changes, rotations otdtegg alter the timing in ways
that cannot be corrected with only a temporal shift.

We aim our cameras straight forward so their sensors plaeressgarallel as possible,
making their alignment transformations as close as passibbure translations. We com-
pute the homographies mapping each camera to the referawedetermine the vertical
components of the alignments at the center of the image, @nidast the corresponding
time displacements from the cameras’ trigger times. As we mted, variations in the
focal lengths and orientations of the cameras prevent theoboaphies from being strictly
translations, causing residual timing errors. In pragtfoe the regions of interest in our
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(b)

Figure 5.10: Alignment of rolling shutter images in the spi@mporal volume. (a) Verti-
cally translating rolling shutter images displaces thewsial planes occupied by earlier or
later frames. This is effectively a temporal offset in theaga. (b) Translating the image
in time by altering the camera shutter timing corrects thsedf As a result, the image is
translated along its original spatiotemporal plane.

videos (usually the center third of the images) the maximuarmores typically under two
row times. At 1560fps, the frames are twelve row times apart.

The timing offset error by the rolling shutter is much easiesee in a video than in a se-
guence of still frames. The video faaven.mpg on the CD-ROM accompanying this thesis
shows a fan filmed at 1560fps using our 52 camera setup antyetaggered trigger times.
The fan appears to speed up and slow down, although its réadityeis constant. Note
that the effect of the timing offsets is lessened by our sargrder—neighboring cameras
have similar alignment transformations, so we do not seieabdhanges in the temporal
offset of each image. Fashifted.mpg is the result of shifting the trigger timingstompen-
sate for the alignment translations. The fan’s motion is sawoth, but the usual artifacts
of the rolling shutter are still evident in the misshapenlitades. Farshiftedsliced.mpg
shows how slicing the video from the retimed cameras remthesmaining distortions.

5.5 Results

Filming a rotating fan is easy because no trigger is needédefan itself is nearly planar.
Now | present a more interesting acquisition: 1560 fps videballoons popping, several
seconds apart. Because our array can stream at high speed] ne deed to explicitly
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Figure 5.11: 1560fps video of a popping balloon with rolligigutter distortions. The
balloon is struck at the top by the tack, but it appears to pomfthe bottom. The top of
the balloon seems to disappear.

synchronize video capture with the popping of the ballodnsfact, when we filmed we

let the video capture run while we walked into the center efrtiom, popped two balloons
one at a time, and then walked back to turn off the recordingis Video is also more

colorful than the fan sequence, thereby exercising ourraaltibration.

Figure 5.11 shows frames of one of the balloons popping. We hligned the images
but not yet sliced them to correct rolling shutter-inducestattion. This sequence makes
the rolling shutter distortion evident. Although we strittee top of the balloon with a
tack, it appears to pop from the bottom. These images are thheraccompanying video
balloonldistorted.mpg. In the video, one can also see the artifiasilon of our shoulders,
which are in front of the object focal plane. Because of our @@ordering and tight
packing, this motion, although incorrect, is relativelyobrectionable. Objects on the wall
in the background, however, are much further from the folzalgpand exhibit more motion.

Figure 5.12 compares unsliced and sliced images of the ddxadloon in the sequence
popping. These sliced frames are from ballo@tized.mpg. In the unsliced sequence, the
balloon appears to pop from several places at once, andspiédesimply vanish. After
resampling the image data, the balloon correctly appegspgdrom where it is punctured
by the pin. This slicing fixes the rolling shutter distort®ohut reveals limitations of our
approach: alignment errors and color variations are muafe mbjectionable in the sliced
video. Before slicing, the alignment error for objects off focal plane was constant for a
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given depth and varied somewhat smoothly from frame to fraffter slicing, off-plane
objects, especially the background, appear distortedusectheir alignment error varies
with their vertical position in the image. This distortioatfern scrolls down the image
as the video plays and becomes more obvious. Before slidieg;dlor variation of each
camera was also confined to a single image in the final highespequence. These short-
lived variations were then averaged by our eyes over seframrales. Once we slice the
images, the color offsets of the images also create a sligatern in the video. Note
that some color variations, especially for specular objeate unavoidable for a multi-
camera system.The reader is once again encouraged to \@exiddns on the companion
CD to appreciate these effects. The unsliced video of thenskballoon popping, bal-
loon2 distorted.mpg, is included for comparison, as well as ainants video showing
both balloons, balloons.mpg.

The method presented acquires very high-speed video uslegsely packed array of
lower frame rate cameras with precisely timed exposure virsd The parallel capture and
compression architecture of the array lets us stream eakgmdefinitely. The system
scales to higher frames rates by simply adding more cambrascuracies correcting the
the temporal offset caused by aligning our rolling shutteages are roughly one sixth
of our frame time and limit the scalability of our array. A meofundamental limit to
the scalability of the system is the minimum integrationdiof the camera. At 1560fps
capture, the exposure time for our cameras is three timesitmenum value. If we scale
beyond three times the current frame rate, the exposureowsdf the cameras will begin
to overlap, and our temporal resolution will no longer matai frame rate.

The possibility of overlapping exposure intervals is a ueifeature of our system—no
single camera can expose for longer than the time betweerefalf we can use temporal
super-resolution techniques to recover high-speed imigescameras with overlapping
exposures, we could scale the frame rate even higher thamérse of the minimum expo-
sure time. As exposure times decrease at very high fram® ratage sensors become light
limited. Typically, high-speed cameras solve this by iasiag the size of their pixels and
using very bright lights. Applying temporal super-res@uatoverlapped high-speed expo-
sures is another possible way to increase the signal-semaiio of a high-speed multi-
camera system. To see if these ideas show promise, | apbkddrmporal super-resolution
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Figure 5.12: Comparison of the sliced and unsliced 1560ffiedrapop. The top set

of ten pictures are interleaved rolling shutter images. Bbakkoon appears to pop from
several places at once, and pieces of it disappear. Propsdynpling the volume of images
produces the lower set of ten images, revealing the trueesbiaihe popping balloon.

method presented by Shechtman [48] to video of a fan filmel amt exposure window
that spanned four high-speed frame times. The temporairakgt process was omitted
because the convolution that relates high-speed framesartblorred images is known.
Figure 5.13 shows a comparison between the blurred bladeretults of the temporal
super-resolution, and the blade captured in the samerightith a one frame exposure
window. Encouragingly, the deblurred image becomes sharpkless noisy.

There are several opportunities for improving this work.e@ma more sophisticated
alignment method that did not suffer from artificial motidttgr for objects off our assumed
focal plane. Another is combining the high-speed methoti wiher multiple camera ap-
plications. In the next chapter, | will discuss an applicatihat does both—spatiotemporal
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@) (b) (c)

Figure 5.13: Overlapped exposures with temporal sup@itesn. (a) Fan blades filmed
with an exposure window four high-speed frames long. (b) deml super-resolution
yields a sharper, less noisy image. Note that sharp fedikeethe specular highlights and
stationary edges are preserved. (c) A contrast enhancegkiofdhe fan filmed under the
same lighting with an exposure window one fourth as long.eNbé highly noisy image.

view interpolation.
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Chapter 6

Application #3: Spatiotemporal View
Interpolation

The synthetic aperture and high-speed videography apiplitsapresented in the last two
chapters use an array of cameras, accurate calibratiorpractse camera control to en-
hance performance along a single metric. Nothing preventsom using this set of tools
to simultaneously improve multiple aspects of camera perémce. For example, we could
create a high-speed, synthetic aperture video camera sisiggered sets of synchronized
cameras spread across the synthetic aperture. Anothebitipssould be a high dynamic
range, high-resolution video camera constructed from camlesters, where the cameras
in each cluster have the same field of view but varying exmosares, and their fields of
view abut.

This chapter explores using a dense array of cameras wijlgestad trigger times to
increase our sampling resolution in both space and timepfatictemporal view interpola-
tion. We look at the more general problem of optimal samppatgerns and interpolation
methods for the spatiotemporal volume of images that theecararray records. Large
video camera arrays are typically synchronized, but we dhatvstaggering camera trig-
gers provides a much richer set of samples on which to basetdrpolation. Richer sam-
pling not only improves the simplest interpolation methdidending and nearest neighbor,
but also lets one interpolate new space-time views usinglsimobust, image-based meth-
ods with simple calibration. We present a novel optical floatimod that combines a plane

81



82 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

plus parallax framework with knowledge of camera spatidl temporal offsets to generate
flow fields for virtual images at new space-time locations. piésent results interpolating
video from a 96-camera light field.

6.1 Introduction

Spatiotemporal view interpolation is the creation of newrseviews from locations and
times different from those in the captured set of images. Stimplest spatiotemporal inter-
polation method is extending light field rendering to vidgdibearly interpolating in time.
For this reconstruction to work, the image volume must beldamited. Such prefiltering
adds undesirable blur to the reconstructed images. Evérvery large camera arrays, the
sampling density is not sufficiently high to make the blur ergeptible. If the images are
not band-limited, the output exhibits ghosting artifadtkis occurs for large disparities or
temporal motions.

To avoid the conflicting requirements for sharp images witlsampling artifacts, most
image based rendering systems use more sophisticategdlstgon schemes based on an
underlying scene model. The simplest method is to estimatgomin an image based
on local information from neighboring views. Other methaperate increasingly so-
phisticated three-dimensional models of the scene. Magiimation grows less robust
as the “distance” between camera images increases. Morglicated models can handle
more widely separated images, but their runtime increasesae global information is
incorporated.

The temporal sampling strategy for an array of cameras—welheh camera triggers—
affects reconstruction. Traditionally, designers of cearerrays have striven to synchro-
nize their cameras. This often leads to much more temporimbetween camera frames
than parallax motion between neighboring cameras. Insgtadgered triggers are a better
sampling strategy. Improved temporal sampling decre@sepdral image motion, allow-
ing us to use simpler, more robust interpolation methodk asmptical flow. | will present
a spatiotemporal view interpolation method that uses ptaparallax calibration to fac-
tor optical flow into parallax and temporal motion compomsenetween multiple camera
views.
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The next section describes previous work in capturing atedpolating between space-
time image samples. I'll review plane + parallax geometry aar rendering methods, then
describe a framework for determining how best to distritmuie camera array samples in
time. Even for basic linear or nearest neighbor, better samgreatly improves recon-
struction. Finally, | will describe a method for determigispatial and temporal motion
between several views in space and time using optical flow.

6.2 Previous Work

We have already discussed prior work in camera array desdjs@atial view interpolation.
The Manex Entertainment “Bullet Time” system simulated agitsily impossible space-
time camera trajectory through a dynamic scene, but therpat be specified in advance.
The cameras capture the views needed for a single camerdpetiyoal of the work in this
chapter is to investigate how well one could do “Bullet Timééets as a post-processing
step for a captured set of images without specifying the wrayectory in advance.

Spatiotemporal view interpolation depends on samplingtafties and interpolation
methods. Lin and Shum [52] present a maximum camera spaomgtdtic light fields
with a constant depth assumption, and Chai et al. [53] andahgeninimum spatial sam-
pling rate for static light fields including geometry infoation. Neither of these works
address temporal sampling rates for video light fields. V@t al. [54] and Carceroni
and Kutulakos [55] present methods for interpolating neacsgtime views using arrays of
synchronized cameras with coincident triggers. They eiplisolve for scene reflectance,
structure and motion. By contrast, my system exploits latgelyers of inexpensive sensors
and improved temporal sampling to reduce spatiotempoeal interpolation to a simpler,
image-based task.

6.3 Calibration and Rendering

For this work, the cameras are assembled either in a linelana go we can take advantage
of plane + parallax calibration. Because this calibratiareistral to this work, | will briefly
review it. Starting with a planar array of cameras, we alijroathe camera images to
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a fronto-parallel reference plane using 2D image homogesphin the aligned images,
points in the scene lying on the reference plane show nolpataétween views. Points off
the reference plane will have a parallax\yf = Ax-d, whereAx s the vector fronCq to Cy
in the camera plane, artlis the relative depth of the point. This has two implications

e Once we have aligned images to a common reference planeathitap between
aligned images of a single point off the reference plane @igh to determine the
relative locations in the camera plane of all of the camekasshown by Vaish et al.
[7], the camera displacements can be computed robustlyrfratiiple measurements
using a rank-1 factorization via SVD.

e Given the relative camera displacements in the camera tla@eelative depth of a
point in one view suffices to predict its location in all othveews. This provides a
powerful way to combine data from many images.

Once again, we will align all of our input images to a refeeptane. The aligned
images provide a common space in which to analyze and corml@ns. Levoy and Han-
rahan represent light fields with a two-plafeyv, s,t) parametrization. For a planar array of
cameras, the aligned images corresp(t) parameterized images for light field render-
ing, SO measuring motion in the reference plane indicatesrhoch aliasing we would see
in reconstructed light field images. We will use this framewboth to analyze temporal
sampling requirements and for determining image flow betwesighboring space-time
views.

Aligning our images to a reference plane automaticallyexds for geometric variations
in our cameras (excluding translations out of the camenaepdand radial distortion, which
we have found to be negligible for our application). The iadid images are generally off-
axis projections, which are visually disturbing. This igai from the aligned views of
the calibration target in figure 4.7—the reference plantéalways appear fronto-parallel,
regardless of the camera position.

The transformation that we need for rendering corrects fhaxis projection and is
equivalent to taking a picture of the aligned plane from timual camera position. Plane
+ parallax calibration does not provide enough informatmdo this. If we fix the relative
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Figure 6.1: For synchronized cameras, the motion due tdlgarfaetween neighboring
cameras is often much less than the temporal motion betwamsres$ for the same camera.
(a) and (b) are images from adjacent cameras at the samampbime. Disparities between
images are small. (c) shows a picture from the same cameig,asng frame later. The
motion is obvious and much larger.

camera locations produced by our calibration, the missifyination corresponds to the
field of view of our reference camera and the distance front#imeera plane to the refer-
ence plane. These quantities can be determined either ibyatalg the reference camera
relative to the reference plane or simple manual measurerrepractice, we have found

that small errors in these quantities produce very subtigpeetive errors and are visually
negligible.

6.4 Spatiotemporal Sampling

We now turn our attention to the temporal distribution of samples. We assume that our
cameras all run at a single standard video rate (30fps foaway), that they are placed on
a planar grid, and that the desired camera spacing has yabead determined. Figure 6.1
shows aligned synchronized images from our array of 30fgeosicameras. Differences
between images are due to two components: parallax betwews and temporal motion
between frames. From the images, it is clear that the terhpuoege motion is much
greater than the parallax for neighboring views in spacetaneé. This suggests that we
should sample more finely temporally to minimize the maximuomage motion between
neighboring views in space and time. In the next section hee/$row temporal and spatial
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po Ap =i P1 Referenceélane

Figure 6.2: The temporal and spatial view axes are relatddhbge motion. For a given
scene configuration, we can determine a time Atdpr which the maximum image motion
between temporal samples is equal to the maximum paraltavelea spatially neighboring
views. If we measure time in increments &f and space in increments of the camera
spacing, then the Manhattan distance betweeyt) view coordinates corresponds to the
maximum possible image motion between views.

view sampling are related by image motion.

6.4.1 Normalizing the Spatial and Temporal Sampling Axes

For a given location of the reference plane at a distafagckom the camera plane, if we
bound the maximum parallax in our aligned images, we carbksttanear and far depth
limits for our scenez.,ear andzi,. Alternatively, we could determine the minimum and
maximum depth limits of our scene and place the referenaeepdacordingly [53]. The
near and far bounds and camera spaéingetermine the maximum parallax for any point
between neighboring cameras. Given this near depthfigjtand a maximum velocity of
v for any object in the scene, we can determine the time for lwvthie maximum possible
temporal image motion equals the maximum parallax betweahboring views. This is
shown in figure 6.2. The temporal motion f@lin cameraCy is greatest if it is at the near
depth limit and moves such that the vec®#_, 1 is orthogonal to the projection ray from
Co at timet + 1. If we assume a narrow field of view for our lenses, we can@pprate
this with a vector perpendicular to the reference planewshasvAt. If P has velocity,

the maximum temporal motion of its image@g is zOYAAtﬁﬁear- Equating this motion to the
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maximum parallax foP in a neighboring camera yields

At — AXZnear
VAZy

(6.1)

This is the time step for which maximum image motion equalgimam parallax between
neighboring views.

Measuring time in increments of the time sifpand space in units of camera spacings
provides a normalized set of axes to relate space-time viéwsiew is represented by
coordinategx,y,t) in this system. For nearest-neighbor or weighted intetmoidbetween
views, measuring the Manhattan distance between viewipasiin these coordinates will
minimize jitter or ghosting during reconstruction. We usarMattan instead of euclidean
distance because the temporal and parallax motions couddraéiel and in the same direc-
tion. Choosing a temporal sampling period equaltaevill ensure that maximum temporal
motion between frames will not exceed the maximum paral&wben neighboring views.

Determining maximum scene velocities ahead of time (fon®da, from the biome-
chanics of human motion, or physical constraints such asl@ation due to gravity) can
be difficult. An alternative to computing the motion is filngim representative scene with
synchronized cameras and setting the time step equal t@tiocbetween the maximum
temporal and parallax motions for neighboring views. Oneld¢d@ven design a camera
array that adaptively determined the time step based oRkedafeature points between
views.

6.4.2 Spatiotemporal Sampling Using Staggered Triggers

The time stepht tells us the maximum temporal sampling period that will eagempo-
ral resolution at least as good as the spatial resolutiomsacriews. One could increase
the temporal sampling rate by using an array of high-speetecas, but this could be
prohibitively expensive and would increase demands on lolatawidth, processing, and
storage. By staggering the cameras’ trigger times, we carase the temporal sampling
rate without adding new samples.

Our goal is to ensure even sampling in space and time usingaunalized axes. A
convenient way to do this is with a tiled pattern, using th@imum number of evenly
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6| 1| 4
3|10 7
8| 5] 2

Figure 6.3: An example trigger pattern for a 3x3 array of casavith nine evenly stag-
gered triggers. The numbers represent the order in whicte@sfire. The order was
selected to have even sampling in {xey,t) space across the pattern. We tessellate larger
arrays with patterns such as this one to ensure even spagiotal sampling.

staggered trigger times that gives an offset less fitaifo approximate uniform sampling,

the offsets are distributed evenly within the tile, and tla¢tgrn is then replicated across
the camera array. Figure 6.3 shows an example trigger pdtiea 3x3 array of cameras.

For larger arrays, this pattern is replicated verticallg &orizontally. The pattern can be
truncated at the edges of arrays with dimensions that areuabiples of three.

We used the tiled sampling pattern for our experiments sthey were convenient
and we had an approximation of the maximum scene velocitygéoeral scene sampling,
especially with unknown depth and velocity limits, thesétgras are not optimal. When
filming scenes with high temporal image velocities, no twmeeas should trigger at the
same time. Instead, the trigger times should be evenlyilliséd across the 30Hz frame
time, as in the high-speed video method, to provide the begboral sampling resolution.
For scenes with low velocities, parallax image motion dates over temporal motion, so
we must still ensure even temporal sampling within any legatlow. Thus, in the general
case, the sampling must be temporally uniform over any gia¢iad region of cameras.
One way to accomplish this might be to replicate and gragsikw a local trigger pattern
across the entire array.

6.5 Interpolating New Views

We can now create our distance measure for interpolatioe pldne + parallax calibration
gives up camera positions in the camera plane up to somefactde We normalize these
positions by dividing by the average space between adj@aené¢ras, so the distance from
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a camera to its horizontal and vertical neighbors is appnaiely one. Letx,y) be the
position of each camera in these normalized coordinatek|etih be the time at which a
given image is acquired, measured in time step& oBecause we have chosen a time step
that sets the maximum parallax between views equal to thenmoaxx temporal motion
between time steps, the euclidean distance betweefxtig) coordinates representing
two views is a valid measure of the maximum possible motidwéen the two images.

The simplest way we could interpolate new views would be ® nsarest neighbors
as in the high-speed videography method of chapter 5. Thikodeproduces accept-
able results, but as points move off the reference plané,ithages jitter due to parallax
between views. The perceived jitter can be reduced usimgpalation between several
nearby views. To determine which images to blend and how ighw¢hem, we compute
a Delauney tessellation of our captured image coordinafes.a new view(x,y,t), we
find the tetrahedron of images in the tessellation contgitiie view and blend the images
at its vertices using their barycentric coordinates as ktsigUsing this tessellation and
barycentric weighting ensures that our blending variesahip as we move the virtual
viewpoint. As we leave one tetrahedron, the weights of dedpygertices go to zero. Our
temporal sampling pattern is periodic in time, so we onlydi@ecompute the tessellation
for three 30Hz sampling periods to compute the weights faraitrarily long sequence.

Figure 6.4 shows the benefits of improved temporal samplimghis experiment, we
used a 12x8 array of 30fps video cameras similar to that shoviigure 3.4 to film me
heading a soccer ball. The cameras were triggered accaliting pattern in figure 6.3,
tiled across the array. We then generated 270fps integzblatleo using several methods.
First, we used a cross-dissolve between sequential franteeaamera to simulate linear
interpolation for a synchronized array. The motion of thecgs ball between captured
frames is completely absent. Next, we used nearest-neighigopolation, which assem-
bles a video sequence using video captured at the propefriimmeneighboring cameras.
This produces sharp images and captures the path of thébiaihe motion is jittered due
to parallax between views. Finally, we used the barycememghted averaging described
previously. This reduces the ball’'s motion jitter but irdtuzes ghosting.

Staggering the cameras clearly improves our temporalutisnland results in much
better results even for simple nearest-neighbor and weigimterpolation. Because our
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(b)

Figure 6.4: Better temporal sampling improves interpotatia) Linear interpolation be-
tween frames in time for a synchronized camera array is jusbss-dissolve. (b) Nearest-
neighbor interpolation using staggered cameras prodinagp gmages, but this composite
of multiple images shows that the path of the ball is jittedeé to parallax between differ-
ent cameras. (c) Weighted interpolation using the nearesfsvin time and space reduces
the perceived jitter but causes ghost images.

input images are not band-limited in space and time, news/iaterpolated with either of
these methods will always suffer from artifacts if the moti®tween views in time or space
is too great. One could imagine prefiltering spatially ascdbsd in [5], or temporally by
using overlapped exposure windows, but prefiltering addesinable blur to our images.
In the next section, we improve our space-time view intaafoh by analyzing the motion
between captured images.

6.6 Multi-baseline Spatiotemporal Optical Flow

We have seen that distributing samples from a dense canrasamaore evenly in time im-
proves spatiotemporal view interpolation using nearegirbor or weighted interpolation.
Reducing the image motion between captured spatiotempiesais\can also decrease the
complexity or increase the robustness of other interpmtatiethods. The combination of
dense cameras, improved temporal sampling, and plane #gxacalibration allows one
to compute new views robustly using optical flow. We call tisulti-baseline spatiotem-
poral optical flow” because it computes flow using data fronitiple images at different
spatial and temporal displacements (also known and basglin
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We extended Black and Anandan’s optical flow method [56] usodg available on the
author’s web site. Their algorithm is known to handle vimas of the intensity constancy
and smoothness assumptions well using robust estimatiarses a standard hierarchical
framework to capture large image motions, but can fail dueasking when small regions
of the scene move very differently from a dominant backgebfsY]. For our 30fps syn-
chronized juggling sequence, the algorithm succeededdegtwameras at the same time
but failed between subsequent frames from the same camérm.motion of the small
juggled balls was masked by the stationary background. Gueceetimed the cameras,
the motion of the balls was greatly reduced, and the algoritbmputed flow accurately
between pairs of images captured at neighboring locatindgime steps.

Our modified spatiotemporal optical flow algorithm has tweeldeatures. First, we
solve for a flow field at théx, y,t) location of our desired virtual view. This was inspired
by the bidirectional flow of Kang et al. [58], who observe tfatview interpolation, com-
puting the flow at the new view position instead of either seumage handles degenerate
flow cases better and avoids the hole-filling problems of &oawarping when creating
new views. They use this to compute flow at a frame halfway betwtwo images in a
video sequence. Typically, optical flow methods will congflibw between two images by
iteratively warping one towards the other. They calculaie tt the halfway point between
two frames by assuming symmetric flow and iteratively wagdioth images to the mid-
point. We extend the method to compute flow at a desired viesuimormalized x, y,t)
view space. We iteratively warp the nearest four capturexbes toward the virtual view
and minimize the weighted sum of the robust pairwise dat&and a robust smoothness
error.

Motion cannot be modeled consistently for four images &t bht space-time locations
using just horizontal and vertical image flow. The secondmament of this algorithm is
simultaneously accounting for parallax and temporal nmotM/e decompose optical flow
into the traditional two-dimensional temporal flow plus adtlow term for relative depth
that accounts for parallax between views. The standarasitieconstancy equation for
optical flow is

I(i,j,t) =1(i+udt, j+vdt,t+ dt) (6.2)
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Here,(i, j,t) represent the pixel image coordinates and time,aawldv are the horizontal
and vertical motion at an image point. We usad j in place of the usuat andy to avoid
confusion with our view coordinatés, y,t).

Plane + parallax calibration produces the relative disptaents of all of our cameras,
and we know that parallax between two views is the producheirtdisplacement and
the point’s relative depth. Our modified intensity constaaquation includes new terms
to handle parallax. It represents constancy between aedegirtual view and a nearby
captured image at some offetdx, ddy,ddt) in the space of source images. It accounts
for the relative depthd, at each pixel as well as the temporal flwv):

Lirtual (is ,% Y, t) = Isource(i + Udt + ddX, j + vot + ddy,t + ot) (6.3)

This equation can be solved for each pixel using a modifinatioBlack’s robust optical
flow. Appendix A describes the implementation details.

We compute flow using four images from the tetrahedron whittiases the desired
view in the same Delauney triangulation as before. The image progressively warped
toward the common virtual view at each iteration of the alpon. We cannot test the
intensity constancy equation for each warped image agaimstual view, so we instead
minimize the error between the four warped images themsglgng the sum of the pair-
wise robust intensity constancy error estimators. Thislpees a single flow map, which
can be used to warp the four source images to the virtual Wi¢svcurrently do not reason
about occlusions and simply blend the flowed images usingliaeycentric weights in the
tetrahedron.

Figure 6.5 compares view interpolation results using oatispemporal optical flow
versus a weighted average. Because the computed flow is wmdisr the four views,
when the source images are warped and blended, the ballragbeap. The sinterpl.mp4
video on the companion CD-ROM compares blending, neareghber and flow-based
interpolation for this dataset. The sequences in which t@point is fixed show that the
flow-based interpolation is exactly the registration reggito remove alignment errors in
the high-speed video method of the previous chapter.

To allow a greater range of virtual camera movement, we cordijour cameras in a
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Figure 6.5: View interpolation using space-time opticahMlig¢a) Interpolated 270fps video

using weighted average of four source images. (b) Intetpdla70fps video using optical

flow. The four source images were warped according to the ateddlow and then aver-

aged using the same weights as in image a. No double imagpeegent because parallax
and motion for the ball were correctly recovered.

30 wide by 3 tall array. We used the same 3x3 trigger ordetilggl across the array. In
stinterp2.mp4 on the CD-ROM, we show another soccer sequenghigh we alternate
smoothly between rendering from one view position at 27@dseezing time and render-
ing from novel viewing positions. Figure 6.6 shows twenggnfires with a slowly varying
viewing positions and times. Figure 6.7 shows five framesispp@ the spatial viewing
range of the array.

6.7 Discussion

Our multiple camera array allows us to control the image dasthat are recorded from the
spatiotemporal volume a scene generates, and the samplitggrpchosen greatly affects
the complexity of the view interpolation task. While in thgat is possible to simply
resample a linear filtered version of the samples to genemteviews, even with large
numbers of inexpensive cameras, it seems unlikely one afildn high enough sampling
density to prevent either blurred images or ghosting atstanstead, the correct placement
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of samples allows the use of simpler modeling approachbsrétan none at all. The key
guestion is, how sophisticated a model is needed and whatlisenibasis allows the most
robust modeling methods to be used to construct a desirecvie

For many interpolation methods, minimizing image moticade to better quality view
synthesis, so we use minimizing image motion to guide oupsaiplacement. Given our
relatively planar camera array, we use a very simple planarallax calibration for inter-
polation in space. For images aligned to a reference plgaias view motion results in
parallax for points not on the reference plane. This motiastie balanced against tem-
poral image motion. In our camera array this disparity moisomodest between adjacent
cameras, and is much smaller than the true motion from franframe.

Staggering camera trigger in time distributes samplesdoae temporal image motion
between neighboring views without adding new samples. layastaggered time sampling
is never a bad sampling strategy. Clearly the denser timelsarhplp for scenes with high
image motion. For scenes with small motion, the denser tengpses do no harm. Since
the true image motion is small, it is easy to estimate the a@@ny intermediate time, un-
doing the time skew adds little error. Since the spatial $eagpensity remains unchanged,
it does not change the view interpolation problem at all. &a#mporal sampling lets us
apply relatively simple, fairly robust models like optidkdw to view interpolation in time
and space. We solve for temporal image motion and image mdtie to parallax which
improves our interpolation.

Because our flow-based view interpolation methods are ldlcalconstraints on the
camera timings are also local. They need to sample evenlyarydocal neighborhood.
We use a simple tessellated pattern with locally uniformarg at the interior and across
boundaries. Algorithms that aggregate data from an entregy af cameras will benefit
from different time stagger patterns and raises the intiegeqguestion of finding an optimal
sampling pattern for a few of the more sophisticated modskld methods.

While it is tempting to construct ordered dither patternsdoeyate unique trigger times
for all cameras there is a tension between staggered shtdteicrease temporal resolution
and models that exploit the rigid-body nature of a singleetstice. This seems to be an
exciting area for further research.

Staggered trigger times for camera arrays increase tem@s@ution with no extra
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cost in hardware or bandwidth, but have other limits. Onel&mental limit is the num-

ber of photons imaged by the cameras if the exposure windosvsan-overlapping. The
aperture time for each camera is set to be equal to the siaiesdifference between the
cameras. While this minimizes unintended motion blur, athgixsharp images in “Bul-

let time” camera motion, at some point the number of photonthé scene will be too
small, and the resulting image signal to noise ratio williheg increase. This gives rise
to another dimension that needs to be explored—optimiziagélation between the mini-
mum spacing between time samples and the aperture of theasme mentioned earlier,
Shechtman et al. [48] have done some promising work in thés,ansing multiple un-

synchronized cameras with overlapping exposures to edt@imotion blur and motion
aliasing in a video sequence.

For our image-based methods, uniform spatiotemporal sagfmits image motion
and enhances the performance of our interpolation methddsanalyzed spatiotemporal
sampling from the perspective of interpolation with a canstlepth assumption and related
the temporal and spatial axes with maximum image motiongaparallax and time. That
constant-depth assumption is one of the limitations of wask. In the future, | would
like to enable more general scene geometries. The spapotainoptical flow method
generates significantly better results than weighted gimga but still suffers from the
standard vulnerabilities of optical flow, especially ositins and masking.
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Figure 6.6: Twenty sequential frames from an interpolateléw sequence demonstrat-
ing slowly varying view positions and times. The input datarevcaptured using a 30x3
array of cameras with nine different trigger times. All vieshown are synthesized. Be-
neath each image are the (x,t) view coordinates, with x itswofiaverage camera spacings
(roughly three inches) and t in milliseconds. Motion is mev&dent looking across rows

or along diagonals from top left to bottom right.
- 4’
-8.2 7.23 14.0
Figure 6.7: Five synthesized views showing the spatial migwange for the 30x3 config-

0.47
uration. View spatial coordinate is again in units of cansgacings, roughly three inches.

-15.0



Chapter 7
Conclusions

Digital video cameras are becoming cheap and widespreealicg new opportunities for
increased imaging performance. Researchers in this spaocam@er several obstacles. For
system designers, large video camera arrays generatetdat@sthat overwhelm com-
modity personal computers and storage media. Inexpensivenodity cameras do not
offer the degree of control or flexibility required for resgla Assuming some system for
collecting data from many cameras, researchers must desfibeation methods that scale
to large numbers of cameras, and vision and graphics digasithat robustly account for
the lower image quality and more varied geometric and radtamproperties of inexpen-
sive camera arrays.

The architecture in this thesis addresses the issues efiadarge camera array design.
It exploits CMOS image sensors, IEEE1394 communication aR&® video compression
to control and capture video from very large numbers of cas&y a few PCs. A flexible
mounting system lets us explore many different configuratiand applications. | have
shown three applications demonstrating that we can effdgtcombine data from many
inexpensive sensors to increase imaging performance.

Although synthetic aperture photography has been donestatit scenes before, we
were the first to capture synthetic aperture videos or to hiseechnique to look through
partial occluders. Our live synthetic aperture system wittractive focal plane adjustment
also shows the value of low-level image processing powdreatameras.

The high-speed videography method increases the effdetmporal sampling rate of

97
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our system by staggering the trigger times of the cameras.cAllecompensate for the
electronic rolling shutter in many low-end sensors by ijittg the camera triggers and re-
sampling their output. We have pushed this technique up@&0fps video using 52 tightly
packed, 30fps cameras. The parallel compression in thg ktsaus stream continuously
at this frame rate.

The spatiotemporal view interpolation system | proposeuiemeously extends imag-
ing performance along multiple axes—view position and tiniieshows that with inex-
pensive cameras, we can reduce view interpolation of dyn@acenes from estimating
three-dimensional structure and motion to determinin@lfeat and two-dimensional im-
age velocities. Much of this gain is due to improved sampiiogn staggered trigger times,
which minimizes image motion between captured views andblesaoptical-flow based
algorithms. The multi-baseline, spatiotemporal opticalvfimethod not only presents a
simple framework for synthesizing new virtual views, buigatlemonstrates that the cali-
bration is adequate for vision algorithms like optical flavhich are sensitive to noise and
radiometric camera variations.

We have shown a video capture system for large arrays of @msiype cameras and
applications proving that we can use these cameras foestieg high-performance imag-
ing, computer vision, and graphics applications. Where dgwé&om here? Our recent
experiments with real-time applications using the came&ydave produced encouraging
results, but performance limits imposed by the architectue already apparent. We can
do low-level image processing at each camera, but imagefidatamultiple cameras can
only be combined at the host PC. Thus, the host PCs are thertsatkléor our live syn-
thetic aperture system. The same would be true of any ofistHight field compression
method that accounts for data redundancy between camerase Flesigns should clearly
allow data to flow between cameras. That said, we must dewagppcations before we
can determine the performance needs for a next generatiay, and the array as is has
already proved to be a valuable tool in that research.

SAP and high-speed videography are but two of the high-x otstlenumerated in
chapter 2, and it would be interesting to pursue others. Asgiahe on-going research
effort involving the camera array, we are currently expigrthe high-resolution approach
using cameras with abutting fields of view. We hope to takeaathge of the per-camera
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processing to individually meter each camera and extendythemic range of the mosaic,
too. Some global communication to ensure smooth transiflometering across the array
might be necessary.

There still remain several other untapped high-x dimerssioiynamic range, depth of
field, spectral resolution, low noise, and so on. One questaaed by the high-x appli-
cations is, when can a cluster of cameras outperform a singbee expensive camera?
For many applications, it will depend on the economics aralityuof inexpensive sensors
compared to the available performance gain of using manyecasnFor example, because
the noise reduction from averaging images frowameras grows only asgrt(n), if inex-
pensive cameras have much worse noise performance tharpgbesa/e alternative (due
to poor optics, more dark current, and so on), they will beblm#o affordably close the
gap. By contrast, for high-resolution imaging using camevils abutting fields of view,
resolution grows linearly with the number of cameras, whdst most likely grows much
faster when increasing the resolution of a single cameratH®reason, | would expect
the multiple camera approach to be superior.

For other applications, the consequences of imaging withiplel cameras will fun-
damentally limit performance regardless of sensor qualitgost. For example, even if
our high-speed videography method were not limited by ther fight-gathering ability
of inexpensive sensors, we would still have to contend witbre caused by the multiple
camera centers of projection. With perfect radiometric eancalibration, we will still
see differences between images from adjacent cameras dpedolarities and occlusions.
These types are artifacts are unavoidable. Optical mettwoelssure a common center of
projection might be acceptable for some applications, btfor high-speed videography
because they reduce the light that reaches each camera.

Attempting to outperform single, high-end cameras willyadruitful for some appli-
cations, but an even richer area to explore is performanice ¢fzat are impossible with a
single camera. View interpolation itself is one example other is the synthetic aperture
matting technique | mention in chapter 4. Summing contrdmg only from pixels in the
input images that see through the occluder eliminates ttegfound instead of blurring it
away and produces images with greater contrast. This rearlioperation would be impos-
sible with a single large-aperture camera. Surely therst @her opportunities for these
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sorts of advances.

The possibilities for improved imaging using arrays of ipersive cameras are vast,
but the tools for exploring them are rare. When | started thigegt, | did not anticipate
that completely reconfiguring an array of one hundred casferanew applications would
someday become a common and undaunting task. | hope this ties convinced the
reader not only that we can provide the control, capture afillration capabilities neces-
sary to easily experiment with hundreds of cameras, butthsiothese experiments will
yield rich results.



Appendix A

Spatiotemporal optical flow
Implementation

In this appendix, | will describe in detail how we solve forasiptemporal optical flow at
virtual view locations. To review, the goal of multibaseispatiotemporal optical flow is to
determine components of image motion due to temporal scetiemand parallax between
views of a scene from different positions and times. To madke/\nterpolation simple,
we solve for this flow for pixels in the image at the virtualwiag position and time. Our
views are parametrized ky,y,t), where(x,y) is the location in our plane of cameras, and
t is the time the image was captured. We use four source viewsnpute flow because
that is the minimum number to enclose a given virtual view um 8D space-time view
coordinates.

We assume that our cameras all lie in a plane and use planeattapacalibration to
determine the displacements, between the cameras and some reference camera. Note
that although we use a reference camera for the displacsrtigpically a central camera),
our algorithm is still truly multi-view, considering all ozeras equally, because only the
relative displacements between cameras matter. We alightae images from all cameras
to a common reference plane using planar homographies.elalitned images, for two
cameras separated in the camera plane by some relativaaispenik, the parallax for a
given point at relative deptiv is justwx.

We represent temporal scene motion by its two-dimensior@égtion (u,v) onto the
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image plane, similarly to traditional optical flow. Espélsidor cameras aligned on a plane,
estimating motion on the z-axis can be ill-conditioned. BReseathe camera trigger times
are deliberately offset to increase the temporal sampésglution and ensure that for any
virtual view there are several captured views from nearbgtions and times, the combined
motion due temporal and spatial view changes is minimized.

Multibaseline spatiotemporal optical flow estimates th&tantaneousu,v,w) image
flow for each pixel in a virtual view at position and tinfe,y,t). It is called multibase-
line because it considers multiple source images for eathaviview, and the spatial and
temporal distances from the arbitrary virtual view to eatthe nearby captured ones are
generally different. For each pixél j) in the virtual view, we attempt to solve the follow-
ing equation with respect to each source image:

lirtual (15 J, %, Y5 t) = lsource(i + Ut + WX, j + vot + wdy,t 4 ot)

Optical flow methods traditionally compute a flow error metsy warping one image to-

ward the other based on the computed flow and measuring tiffeiretice. Because the

virtual image does not exist, we cannot directly compare gdch warped source image.
Instead, we measure the accuracy of the computed flow by mgatbe four nearby space-
time views to the virtual view and comparing them to eachothe

At this point, we adopt the robust optical flow framework désed by Michael Black
in [56]. He determines flow in one image with respect to anollyeminimizing a robust
error function with data conservation and spatial smoathiierms. The data conservation
term at each pixel is derived from the intensity constanayagiqn:

Ep = p1 (Ixu+lywv+ Iy, 01)

Here, Iy, ly andl; are the spatial and temporal image derivatives, aj{érr, o) is some
error estimator. p;(x) = x> would correspond to squared error estimation. The spatial
coherence term measures the spatial derivative of the cahfflow at each pixel:

Es=A ZG (P2(U—Un, 02) + P2(V—Vn, 02))
ne
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whereG are the north, south, east and west neighboring pixels,ugrahd u, are the
computed flow for pixel n in that setd sets the relative weight of the smoothness term
versus the data term.

Motion discontinuities and occlusions violate assumgiohsmoothness and intensity
constancy, and create outlier errors that deviate greadiy the Gaussian measurement
error assumed by least squares. These outliers have iateljitarge influences on squared
errors. Black introduces robust error estimators that redbe effect of these outliers.
For his flow implementation, he uses the Lorentzian, whosgeva(x, o) and derivative
Y(x, o) with respect to a measured error x are:

Po(x) = log (H% (g)z)

(X) — L
WolX) = 202 1 X2

o is a scale factor related to the expected values of inliedsoartiiers.

We too use the Lorentzian estimator. Now, we can formalizeeaor metric. Although
we solve for flow using multiple source images, we computeftbe for pixels in a single
virtual image. Thus, the spatial coherence error tEgms unchanged. Our data coherence
term must measure errors between four source images warkd virtual view accord-
ing to our three-component floju,v,w). To use gradient-based optical flow, we need to
compute temporal derivatives between images, so we metmiseim of pairwise robust
errors between warped images. Here, we define three newitiggfdr each source view
relative to the virtual viewa, =ty —ty is the temporal offset from the virtual image cap-
tured at timety to source imagé, captured at timén. (Bnx, Bry) = (Xn — Xv,Yn — W) is the
relative displacement in the camera plane from the virtiednto source view,,. The data
conservation error term at each pixel is:

E= 3 p (1 (Ut = ) -+ W B = Brc)) + Iy (V(Grm — ln)
+W(Bmy — Bry)) + It Ul)

Here,lx,,, is the average of the horizontal image spatial derivatisesnagel, andln, at
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the pixel, and likewise for the vertical spatial derivatiyg, . is simply Iy — I, for each

o

pixel.

Now that we have defined robust error functions for multibasespatiotemporal op-
tical flow, all that remains is to solve fdu,v,w) at each pixel to minimize the error. We
modified Black’s publicly available code that calculates flbigrarchically using grad-
uated non-convexity (GNC) and successive over-relaxa@R). Hierarchical methods
filter and downsample the input images in order to captugelanotions using a gradient-
based framework. GNC replaces a non-convex error term withngex one to guarantee
a global minimum, then iterates while adjusting the erramtsteadily towards the desired
non-convex one. Successive over-relaxation is an iteratiegthod for the partial differ-
ential equations the result from the data consistency arab#mess terms. Readers are
referred to [56] more details.

The iterative SOR update equation for minimiziBg= Ep + Es at stepn+ 1 has the
same form as in Black’s work, but we have to update three teomiofv:

1 JE

(n+1) _ () _ oy = Y=

u u wT(u) du
1 0E

(n+1) _\yn) _ .y — Y=

v v wT(v) ov
1 JE

(n+1) (M _ oy = Y™

W W wT(W) ow

where 0< w < 2 is a parameter used to over correct the estimates, fgrandw at each
step and speed convergence. The first partial derivativEsnoth respect tay, v, andw are

JE
- (n;nkm,n(am — On)Yn(errmp, Ul)) +A ne% (U~ Un, O2)

JE
v (mgnlym,n(am— an)Wl(e”m,mUl)> +A ne% Yo(V—Vn, 02)
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g—\llzv = (n;n(lxm’n (Brx — Brx) Yn(€rrmpn) + lyinn (Bry — Bry) wl(e”m,n))>

+A S (W—Wn, 02)
xeG

whereG as before are north, south, east and west neighbors of esehmiandn are
from the set{1,2,3,4 of input images, andrrny,, is the intensity constancy error:

e mn = b, (U(Om — An) +W(Brx — Brx)) + lym (V(Am — 0n) +W(Bmy — Bry)) + Ity
T(u), T(v), and T(w) are upper bounds on the second partiaate/es of E:

I)?mn(am_ an)2> + ﬂ

=3 = ;

03
12 (Om— an)2> 4
+_

T(v) = ( 2 2 >

0;
T(w) = (; (T (Brx — Brx) —|—Iym~n([3mx_[3ny>)2> ) ﬂ

2 )
01 0,

With this, we have all of the pieces to solve for spatioterapoptical flow using simulta-
neous over-relaxation.
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