
HIGH PERFORMANCE IMAGING USING ARRAYS OF

INEXPENSIVE CAMERAS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Bennett Wilburn

December 2004

c© Copyright by Bennett Wilburn 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Mark A. Horowitz Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Pat Hanrahan

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Marc Levoy

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Digital cameras are becoming increasingly cheap and ubiquitous, leading researchers to

exploit multiple cameras and plentiful processing to create richer and more accurate rep-

resentations of real settings. This thesis addresses issues of scale in large camera arrays. I

present a scalable architecture that continuously streamscolor video from over 100 inex-

pensive cameras to disk using four PCs, creating a one gigasample-per-second photometer.

It extends prior work in camera arrays by providing as much control over those samples as

possible. For example, this system not only ensures that thecameras are frequency-locked,

but also allows arbitrary, constant temporal phase shifts between cameras, allowing the

application to control the temporal sampling. The flexible mounting system also supports

many different configurations, from tightly packed to widely spaced cameras, so appli-

cations can specify camera placement. Even greater flexibility is provided by processing

power at each camera, including an MPEG2 encoder for video compression, and FPGAs

and embedded microcontrollers to perform low-level image processing for real-time appli-

cations.

I present three novel applications for the camera array thathighlight strengths of the

architecture and the advantages and feasibility of workingwith many inexpensive cam-

eras: synthetic aperture videography, high speed videography, and spatiotemporal view

interpolation. Synthetic aperture videography uses numerous moderately spaced cameras

to emulate a single large-aperture one. Such a camera can seethrough partially occluding

objects like foliage or crowds. I show the first synthetic aperture images and videos of

dynamic events, including live video accelerated by image warps performed at each cam-

era. High-speed videography uses densely packed cameras with staggered trigger times

to increase the effective frame rate of the system. I show howto compensate for artifacts

v

induced by the electronic rolling shutter commonly used in inexpensive CMOS image sen-

sors and present results streaming 1560 fps video using 52 cameras. Spatiotemporal view

interpolation processes images from multiple video cameras to synthesize new views from

times and positions not in the captured data. We simultaneously extend imaging perfor-

mance along two axes by properly staggering the trigger times of many moderately spaced

cameras, enabling a novel multiple-camera optical flow variant for spatiotemporal view

interpolation.

vi

Acknowledgements

In my early days as a graduate student, my peers warned me not to build a system as part

of my thesis because it would add years to my stay here.

They were right.

Fortunately, these have been great years.

Designing, building, debugging, calibrating, and using anarray of one hundred cameras

is more work than one person can handle. I’d like to thank my friends and colleagues who

helped get this show on the road: Monica Goyal, Kelin Lee, Alan Swithenbank, Eddy

Talvala, Emilio Antunez, Guillaume Poncin, and Katherine Chou. Thanks also to the rest

of the graphics crew who were so dang entertaining and also occasionally picked up a

wrench to help rearrange scores of cameras: Augusto Roman, Billy Chen, and Gaurav

Garg. Special thanks go to Michal Smulski, who was instrumental getting the early camera

prototypes running. To Vaibhav Vaish, for all the calibration work, you da man. Finally,

crazy props to Neel Joshi for his many contributions and for being there in crunch time.

My adviser, Mark Horowitz, has been a great inspiration. Mark, thanks for taking me

on as a student, and thanks for being patient. I’m very grateful that you and my other

readers, Marc Levoy and Pat Hanrahan, dreamed up this array project in the first place

and gave me an opportunity to jump into vision and graphics. What a pleasant surprise

that we never actually used the thing for light field rendering. Marc, your wild enthusiasm

for one application after the next has been great motivation. Thanks also to Harry Shum

for sending me back from China fired up to build these cameras and thinking about video

compression.

SONY, Intel and Interval funded construction of the array through the Immersive Tele-

vision Project. This work was also supported by DARPA grants F29601-00-2-0085 and

vii

NBCH-1030009, and NSF grant IIS-0219856-001.

Of course, all work and no play... I’m not going to individually thank everyone who

made my time here so meaningful and fun. You know who you are.

To Mom, Dad, Dadday, Lauri, Bob and Katherine: thanks for yourlove and support.

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Contributions . 2

1.2 Contributions of Others to this Work 4

1.3 Organization . 5

2 Background 7

2.1 Prior Work in Camera Array Design .7

2.1.1 Virtualized Reality . 7

2.1.2 Gantry-based Systems for Light Fields 8

2.1.3 Film-Based Linear Camera Arrays 9

2.1.4 Bullet Time . 9

2.1.5 Dynamic Light Field Viewer . 10

2.1.6 Self-Reconfigurable Camera Array 11

2.2 View Interpolation and High-X Imaging 11

2.2.1 View Interpolation . 12

2.2.2 High-X Imaging . 14

2.3 Inexpensive Image Sensing .. 18

2.3.1 Varying Color Responses . 18

2.3.2 Color Imaging and Color Filter Arrays19

2.3.3 Inexpensive Manufacturing Methods 20

ix

3 The Stanford Multiple Camera Array 23

3.1 Goals and Specifications .23

3.2 Design Overview . 24

3.2.1 CMOS Image Sensors . 25

3.2.2 MPEG2 Video Compression . 25

3.2.3 IEEE1394 . 26

3.3 System Architecture .27

3.3.1 Camera Tiles . 28

3.3.2 Processing Boards . 32

3.3.3 System Timing and Synchronization 33

3.3.4 Developer Interface to the Boards via IEEE1394 35

3.3.5 Image Processing on the FPGA 36

3.3.6 Limits due to IEEE1394 Arbitration 37

3.3.7 Host PCs . 38

3.3.8 Design Environment . 39

3.4 Final Specifications .40

3.5 Future Work . 41

4 Application #1: Synthetic Aperture Photography 43

4.1 Description of the Method .43

4.2 Geometric Calibration . 46

4.2.1 Full Geometric Camera Calibration 46

4.2.2 Planar Homographies . 51

4.2.3 Plane + Parallax Calibration . 51

4.3 Results . 53

5 Application #2: High-Speed Videography 61

5.1 Previous Work . 62

5.2 High-Speed Videography From Interleaved Exposures 62

5.3 Radiometric Calibration .66

5.3.1 Camera Radiometric Variations 67

5.3.2 Prior Work in Color Calibrating Large Camera Arrays 67

x

5.3.3 Radiometric Calibration Method 69

5.4 Overcoming the Electronic Rolling Shutter 71

5.5 Results . 75

6 Application #3: Spatiotemporal View Interpolation 81

6.1 Introduction . 82

6.2 Previous Work . 83

6.3 Calibration and Rendering . 83

6.4 Spatiotemporal Sampling .. 85

6.4.1 Normalizing the Spatial and Temporal Sampling Axes 86

6.4.2 Spatiotemporal Sampling Using Staggered Triggers 87

6.5 Interpolating New Views .88

6.6 Multi-baseline Spatiotemporal Optical Flow 90

6.7 Discussion . 93

7 Conclusions 97

A Spatiotemporal optical flow implementation 101

Bibliography 107

xi

xii

List of Tables

5.1 Effective depth of field for a 52-camera array. 65

xiii

xiv

List of Figures

2.1 Light Field Rendering . 12

2.2 The Bayer Mosaic color filter array .. . 20

3.1 Camera array architecture .. 28

3.2 A camera tile. 29

3.3 52 cameras on a laser-cut acrylic mount. 30

3.4 Different array configurations using 80/20 mounts. 31

3.5 Camera processing board . 31

3.6 Processing board block diagram .. . 33

3.7 The Stanford Multiple Camera Array 40

4.1 Basic lens system . 45

4.2 Smaller apertures increase depth of field 45

4.3 Synthetic aperture system .. . 46

4.4 The pinhole camera model . 47

4.5 Central projection . 48

4.6 Automatically detected features on our calibration target. 50

4.7 Example of alignment using planar homography 52

4.8 Planar parallax for planar camera arrays 53

4.9 Synthetic aperture sample input images 54

4.10 Sweeping synthetic aperture focal plane 55

4.11 A synthetic aperture image with enhanced contrast 56

4.12 Synthetic aperture video sample input images 56

4.13 Frames from a synthetic aperture video. 57

xv

4.14 Live synthetic aperture video. 58

4.15 Synthetic aperture with occluder mattes. 59

5.1 The tightly packed array of 52 cameras. 63

5.2 Alignment error for our cameras. 64

5.3 Trigger ordering for cameras. 66

5.4 Color checker mosaic with no color correction 70

5.5 Color checker mosaic with color correction 71

5.6 The electronic rolling shutter. 72

5.7 Correcting the electronic rolling shutter distortion. 73

5.8 Spatiotemporal volume. .. 73

5.9 Fan video, sliced to correct distortions. 74

5.10 Corrected rolling shutter video. 75

5.11 1560fps video of a popping balloon. 76

5.12 Comparison of the sliced and unsliced 1560fps balloon pop. 78

5.13 Temporal Super-resolution. 79

6.1 Synchronized views . 85

6.2 Equating temporal and spatial sampling 86

6.3 Example camera timing stagger pattern. 88

6.4 Interpolation with synchronized and staggered cameras. 90

6.5 View interpolation using space-time optical flow. 93

6.6 View interpolation in space and time. 96

6.7 More view interpolation in space and time. 96

xvi

Chapter 1

Introduction

Digital cameras are becoming increasingly cheap and ubiquitous. In 2003, consumers

bought 50 million digital still cameras and 84 million camera-equipped cell phones. These

products have created a huge market for inexpensive image sensors, lenses and video com-

pression electronics. In other electronics industries, commodity hardware components have

created opportunities for performance gains. Examples include high-end computers built

using many low-end microprocessors and clusters of inexpensive PCs used as web server

or computer graphics render farms. The commoditization of video cameras prompts us to

explore whether we can realize performance gains using manyinexpensive cameras.

Many researchers have shown ways to use more images to increase the performance of

an imaging system at a single viewpoint. Some combine pictures of a static scene taken

from one camera with varying exposure times to create imageswith increased dynamic

range [1, 2, 3]. Others stitch together pictures taken from one position with abutting fields

of view to create very high resolution mosaics [4]. Another class of multi-image algo-

rithms, view interpolation, uses samples from different viewpoints to generate images of a

scene from new locations. Perhaps the most famous example ofthis technology is the Bullet

Time special effects sequences inThe Matrix. Extending most of these high-performance

imaging and view interpolation methods to real, dynamic scenes requires multiple video

cameras, and more cameras often yield better results.

Today one can easily build a modest camera array for the priceof a high-performance

studio camera, and it is likely that arrays of hundreds or even a thousand cameras will

1

2 CHAPTER 1. INTRODUCTION

soon reach price parity with these larger, more expensive units. Large camera arrays create

new opportunities for high-performance imaging and view interpolation, but also present

challenges. They generate immense amounts of data that mustbe captured or processed

in real-time. For many applications, the way in which the data is collected is critical, and

the cameras must allow flexibility and control over their placement, when they trigger,

what range of intensities they capture, and so on. To combinethe data from different

cameras, one must calibrate them geometrically and radiometrically, and for large arrays to

be practical, this calibration must be automatic.

Low-cost digital cameras present additional obstacles that must be overcome. Some

are the results of engineering trade-offs, such as the colorfilter gels used in single-chip

color image sensors. High-end digital cameras use three image sensor chips and expensive

beam-splitting optics to measure red, green and blue valuesat each pixel. Cheaper, single-

chip color image sensors use a pattern of filter gels over the pixels that subsamples color

data. Each pixel measures only one color value–red, green orblue. The missing values at

each pixel must be interpolated, from neighboring pixel data, which can cause errors. Other

obstacles arise because inexpensive cameras take advantage of weaknesses in the human

visual system. For example, because the human eye is sensitive to relative, not absolute,

color differences, the color responses of image sensors areallowed to vary greatly from chip

to chip. Many applications for large camera arrays will needto calibrate these inexpensive

cameras to a higher precision than for their intended purposes.

1.1 Contributions

This thesis examines issues of scale for multi-camera systems and applications. I present

the Stanford Multiple Camera Array, a scalable architecturethat continuously streams

color video from over 100 inexpensive cameras to disk using four PCs, creating a one

gigasample-per-second photometer. It extends prior work in camera arrays by providing

as much control over those samples as possible. For example,this system not only en-

sures that the cameras are frequency-locked, but also allows arbitrary, constant temporal

phase shifts between cameras, allowing the application to control the temporal sampling.

The flexible mounting system also supports many different configurations, from tightly

1.1. CONTRIBUTIONS 3

packed to widely spaced cameras, so applications can specify camera placement. As we

will see, the range of applications implemented and anticipated for the array require a vari-

ety of physical camera configurations, including dense or sparse packing and overlapping

or abutting fields of view. Even greater flexibility is provided by processing power at each

camera, including an MPEG2 encoder for video compression, and FPGAs and embedded

microprocessors to perform low-level image processing forreal-time applications.

I also present three novel applications for the camera arraythat highlight strengths of

the architecture and demonstrate the advantages and feasibility of working with large num-

bers of inexpensive cameras: synthetic aperture videography, high speed videography, and

spatiotemporal view interpolation. Synthetic aperture videography uses many moderately

spaced cameras to emulate a single large-aperture one. Sucha camera can see through

partially occluding objects like foliage or crowds. This idea was suggested by Levoy and

Hanrahan [5] and refined by Isaksen et al. [6], but implemented only for static scenes or

synthetic data due to lack of a suitable capture system. I show the first synthetic aperture

images and videos of dynamic events, including live synthetic aperture video accelerated

by image warps performed at each camera.

High-speed videography with a dense camera array takes advantage of the temporal

precision of the array by staggering the trigger times of a densely packed cluster of cam-

eras to create an effectively higher resolution video camera. Typically, high-speed cameras

cannot stream their output continuously to disk and are limited to capture durations short

enough to fit on volatile memory in the device. MPEG encoders in the array, on the other

hand, compress the video in parallel, reducing the total data bandwidth and allowing contin-

uous streaming to disk. One limitation of this approach is that the data from cameras with

varying centers of projection must be registered and combined to create a single video.

We minimize geometric alignment errors by packing the cameras as tightly as possible

and choosing camera triggers orders that render artifacts less objectionable. Inexpensive

CMOS image sensors commonly use an electronic rolling shutter, which is known to cause

distortions for rapidly moving objects. I show how to compensate for these distortions by

resampling the captured data and present results showing streaming 1560 fps video cap-

tured using 52 cameras.

The final application I present, spatiotemporal view interpolation, shows that we can

4 CHAPTER 1. INTRODUCTION

simultaneously improve multiple aspects of imaging performance. Spatiotemporal view

interpolation is the generation of new views of a scene from acollection of input images.

The new views are from places and times not in the original captured data. While previous

efforts used cameras synchronized to trigger simultaneously, I show that using our array

with moderately spaced cameras and staggered trigger timesimproves the spatiotemporal

sampling resolution of our input data. Improved sampling enables simpler interpolation

algorithms. I describe a novel, multiple-camera optical flow variant for spatiotemporal

view interpolation. This algorithm is also exactly the registration necessary to remove the

geometric artifacts in the high-speed video application caused by the cameras’ varying

centers of projection.

1.2 Contributions of Others to this Work

The Stanford Multiple Camera Array Project represents work done by a team of students.

Several people made key contributions that are described inthis thesis. The design of the

array itself is entirely my own work, but many students aidedin the implementation and

applications. Michal Smulski, Hsiao-Heng Kelin Lee, Monica Goyal and Eddy Talvala

each contributed portions of the FPGA Verilog code. Neel Joshi helped implement the

high-speed videography and spatiotemporal view interpolation applications, and worked on

several pieces of the system, including FPGA code and some ofthe larger laser-cut acrylic

mounts. Guillaume Poncin wrote networked host PC software with a very nice graphical

interface for the array, and Emilio Antunez improved it withsupport for real-time MPEG

decoding.

Robust, automatic calibration is essential for large cameraarrays, and two of my col-

leagues contributed greatly in this area. Vaibhav Vaish is responsible for the geometric

calibration used by all of the applications in this thesis. His robust feature detector and

calibration software is a major reason why the array can be quickly and accurately cali-

brated. The plane + parallax calibration method he devised and described in [7] is used

for synthetic aperture videography and enabled the algorithm I devised for spatiotemporal

view interpolation. Neel Joshi and I worked jointly on colorcalibration, but Neel did the

1.3. ORGANIZATION 5

majority of the implementation. He also contributed many ofthe key insights, such as fix-

ing the checker chart to our geometric calibration target and configuring camera gains by

fitting the camera responses for gray scale Macbeth checkersto lines. Readers interested

in more information are referred to Neel’s Masters thesis [8].

1.3 Organization

The next chapter examines the performance and applicationsof past camera array designs

and emphasizes the challenges of controlling and capturingdata from large arrays. It re-

views multiple image and multiple camera applications to motivate the construction of

large camera arrays and set some of the performance goals they should meet. To scale eco-

nomically, the Stanford Multiple Camera Array uses inexpensive image sensors and optics.

Because these technologies might be expected to interfere with our vision and graphics

applications, the chapter closes with a discussion of inexpensive sensing technologies and

their implications for image quality and calibration.

Starting from the applications we intended to support and lessons learned from past

designs, I set out to build a general-purpose research tool.Chapter 3 describes the Stanford

Multiple Camera Array and the key technology choices that make it scale well. It summa-

rizes the design, how it furthers the state of the art, and theparticular features that enable

the applications demonstrated in this thesis.

Chapters 4 through 6 present the applications mentioned earlier that show the value of

the array and our ability to work effectively with many inexpensive sensors. Synthetic aper-

ture photography requires accurate geometric image alignment but is relatively forgiving

of color variations between cameras, so we present it and ourgeometric calibration meth-

ods first in chapter 4. Chapter 5 describes the high-speed videography method. Because

this application requires accurate color-matching between cameras as well as good image

alignment, I present our radiometric calibration pipelinehere as well. Finally, chapter 6

describes spatiotemporal view interpolation using the array. This application shows not

only that we can use our cameras to improve imaging performance along several metrics,

but also that we can successfully apply computer vision algorithms to the data from our

many cameras.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter reviews previous work in multiple camera system design to better understand

some of the critical capabilities of large arrays and how design decisions affect system

performance. I also cover the space of image-based rendering and high-performance imag-

ing applications that motivated construction of our array and placed additional demands

on its design. For example, while some applications need very densely packed cameras,

others depend on widely spaced cameras. Most applications require synchronized video,

and nearly all applications must store all of the video from all of the cameras. Finally,

because this work is predicated on cheap cameras, I concludethe chapter with a discussion

of inexpensive image sensing and its implications for our intended applications.

2.1 Prior Work in Camera Array Design

2.1.1 Virtualized Reality

Virtualized RealityTM [9] is the pioneering project in large video camera arrays and the

existing setup most similar to the Stanford Multiple Camera Array. Their camera arrays

were the first to capture data from large numbers of synchronized cameras. They use a

model-based approach to view interpolation that deduces 3Dscene structure from multi-

ple views using disparity or silhouette information. Because they wanted to completely

surround their working volume, they use many cameras spacedwidely around a dome or

7

8 CHAPTER 2. BACKGROUND

room.

The first iteration of their camera array design, called the 3D Dome, used consumer

VCRs to record synchronized video from 51 monochrome CCD cameras[10, 9]. They

routed a common sync signal from an external generator to allof their cameras. To make

sure they could identify matching frames in time from different cameras, they inserted time

codes from an external code generator into the vertical blanking intervals of each camera’s

video before it was recorded by the VCR. This system traded scalability for capacity. With

one VCR per camera, they could record all of the video from all the cameras for essentially

as long as they liked, but the resulting system is unwieldy and expensive. The quality of

VCR video is also rather low, and the video tapes still had to bedigitized, prompting an

upgrade to digital capture and storage.

The next generation of their camera array, called the 3D-Room[11], captured very nice

quality (640x480 pixel, 30fps progressive scan YCrCb) video from 49 synchronized color

S-Video cameras. Their arrangement once again used external sync signal and time code

generators to ensure frame accurate camera synchronization. To store all of the data in

real-time, they had to use one PC for every three cameras. Large PC clusters are bulky

and a challenge to maintain, and with very inexpensive cameras, the cost of the PCs can

easily dominate the system cost. Even with the PC cluster, they were unable to fully solve

the bandwidth problem. Because they stored data in each PC’s 512MB main memory they

were limited to nine second datasets and could not continuously stream. Even with these

limitations, this was a very impressive system when it was first built six years ago.

2.1.2 Gantry-based Systems for Light Fields

The introduction of light fields by Levoy and Hanrahan [5], and Lumigraphs by Gortler et

al. [12] motivated systems for capturing many images from very closely spaced viewing

positions. Briefly, a light field is a two-dimensional array of(two-dimensional) images,

hence a four-dimensional array of pixels. Each image is captured from a slightly different

viewpoint. By assembling selected pixels from several images, new views can be con-

structed interactively, representing observer positionsnot present in the original array. If

these views are presented on a head-tracked or autostereoscopic display, then the viewing

2.1. PRIOR WORK IN CAMERA ARRAY DESIGN 9

experience is equivalent to a hologram. These methods require very tightly spaced input

views to prevent ghosting artifacts.

The earliest acquisition systems for light fields used a single moving camera. Levoy

and Hanrahan used a camera on a mechanical gantry to capture the light fields of real

objects in [5]. They have since constructed a spherical gantry [13] for capturing inward-

looking light fields. Gantries have the advantage of providing unlimited numbers of input

images, but even at a few seconds per image, it can take several hours to capture a full light

field. Gantries also require very precise motion control, which is expensive. The biggest

drawback, of course, is that they cannot capture light fieldsof dynamic scenes. Capturing

video light fields, or even a single light field “snapshot” of amoving scene, requires a

camera array.

2.1.3 Film-Based Linear Camera Arrays

Dayton Taylor created a modular, linear array of linked 35mmcameras to capture dynamic

events from multiple closely spaced viewpoints at the same time [14]. A common strip of

film traveled a light-tight path through all of the adjacent cameras. Taylor’s goal was to

decouple the sense of time progressing due to subject motionand camera motion. Because

his cameras were so closely spaced he could create very compelling visual effects of virtual

camera motion through “frozen” scenes by hopping from one view to the next. His was the

first system to introduce these effects into popular culture.

2.1.4 Bullet Time

Manex Entertainment won the 2002 Academy AwardR© for Best Achievement in Visual

Effects for their work inThe Matrix. The trademark shots in that film were the “Bullet

Time” sequences in which moving scenes were slowed to a near standstill while the cam-

era appeared to zoom around them at speeds that would be impossible in real life. Their

capture system used two cameras joined by a chain of over 100 still cameras and improved

upon Taylor’s in two ways. The cameras were physically independent from each other and

could be spaced more widely apart to cover larger areas, theycould be sequentially trig-

gered with very precise delays between cameras. After aligning the still images, the actors

10 CHAPTER 2. BACKGROUND

were segmented from them and placed in a computer-generatedenvironment that moved in

accordance with the apparent camera motion.

Like Taylor’s device, this camera array is very special-purpose, but it is noteworthy

because the sequences produced with it have probably exposed more people to image-

based rendering techniques than any others. They show the feasibility of combining data

from many cameras to produce remarkable effects. The systemis also the first I know of

with truly flexible timing control. The cameras were not justsynchronized—they could be

triggered sequentially with precisely controlled delays between each camera’s exposure.

This gave Manex unprecedented control over the timing of their cameras.

2.1.5 Dynamic Light Field Viewer

Yang et al. aimed at a different corner of the multiple cameraarray space with their real-

time distributed light field camera [15]. Their goal was to create an array for rendering a

small number of views from a light field acquired in real-timewith a tightly packed 8x8

grid of cameras. One innovative aspect of their design is that rather than using relatively

expensive cameras like the 3D Room, they opted for inexpensive commodity webcams.

This bodes well for the future scalability of their system, but the particular cameras they

chose had some drawbacks. The quality was rather low at 320x240 pixels and 15fps. The

cameras had no clock or synchronization inputs, so their acquired video was synchronized

only to within a frame time. Especially at 15fps, the frame toframe motion can be quite

large for dynamic scenes, causing artifacts in images rendered from unsynchronized cam-

eras. Unsynchronized cameras also rule out multiple view depth algorithms that assume

rigid scenes.

A much more limiting choice they made was not to store all of the data from each

camera. This, along with the lower camera frame rate and resolution, was their solution

to the bandwidth challenge. Instead of capturing all of the data, they implemented what

they call a “finite-view” design, meaning the system returnsfrom each camera only the

data necessary to render some small finite number of views from the light field. As they

point out, this implies that the light field cannot be stored for later viewing or used to

drive a hypothetical autostereoscopic display. Moreover,although they did not claim that

2.2. VIEW INTERPOLATION AND HIGH-X IMAGING 11

had any goals for their hardware other than the light field viewing, the finite-view design

means that their device is essentially single-purpose. It cannot be used for applications that

require video from all cameras. Thus, the bandwidth problemwas circumvented at the cost

of flexibility and quality.

2.1.6 Self-Reconfigurable Camera Array

The Self-Reconfigurable Camera Array developed by Zhang and Chen has 48 cameras

with electronically controlled pan and horizontal motion [16]. The aim of their project is to

improve view interpolation by changing the camera positions and orientations in response

to the scene geometry and the desired virtual viewpoint. Although electronically controlled

camera motion is an interesting property, they observe thattheir system performance was

limited by decisions to use commodity ethernet cameras and asingle PC to run the array.

The bandwidth constraints of their ethernet bus limit them to low quality, 320x240 images.

They also note that because they cannot easily synchronize their commodity cameras, their

algorithms for reconfiguring the array do not track fast objects well.

2.2 View Interpolation and High-X Imaging

All of the arrays mentioned in the previous section were usedfor view interpolation, and

as such are designed for each camera or view to capture a unique perspective image of a

scene. This case is calledmultiple-center-of-projection (MCOP) imaging [17]. If instead

the cameras are packed closely together, and the scene is sufficiently far away or shallow,

then the views provided by each camera are nearly identical or can be made so by a pro-

jective warp. We call this casesingle-center-of-projection (SCOP) imaging. In this mode,

the cameras can operate as a single, synthetic “high-X” camera, where X can be resolution,

signal-to-noise ratio, dynamic range, depth of field, framerate, spectral sensitivity, and so

on. This section surveys past work in view interpolation andhigh-X imaging to determine

the demands they place on a camera array design. As we will see, these include flexibility

in the physical configuration of the cameras, including verytight packing; precise control

over the camera gains, exposure durations, and trigger times; and synchronous capture.

12 CHAPTER 2. BACKGROUND

(a) Acquiring a light
field using an array of
cameras.

(b) Rendering new
views from a light
field.

Figure 2.1: Light Field Rendering uses arrays of images to create new views of a scene.
(a) Sampling the light field using an array of cameras. (b) Rendering a new view. Each ray
in the new view is mapped to rays from the acquired images. In this simplified diagram,
the rays can be mapped exactly to rays from the cameras. Generally, the exact ray from the
virtual viewpoint is not captured by any one camera, so it is interpolated from the nearest
sampled rays.

2.2.1 View Interpolation

View interpolation algorithms use a set of captured images of a scene to generate views

of that scene from new viewpoints. These methods can be categorized by the trade-off

between the number of input images and the complexity of the interpolation process. The

original inspiration for the Stanford Multiple Camera Array, Levoy and Hanrahan’s work

on Light Field Rendering [5], lies at the extreme of using verylarge numbers of images

and very simple interpolation. The light field is the radiance as a function of position and

direction in free (unoccluded) space. Using a set of cameras, one can sample the light field

on a surface in space. To create a new view, one simply resamples the image data. Figure

2.1 shows this in two dimensions.

Light field rendering is an example of image-based rendering(IBR). Traditional model-

based renderers approximate physics using models of the illumination, three-dimensional

structure and surface reflectance properties of a scene. Model-based rendering can produce

very compelling results, but the complexity of the models and rendering grows with the

2.2. VIEW INTERPOLATION AND HIGH-X IMAGING 13

complexity of the scene, and accurately modeling real scenes can be very difficult. Image-

based rendering, on the other hand, uses real or pre-rendered images to circumvent many of

these challenges. Chen and Williams used a set of views with precomputed correspondence

maps to quickly render novel views using image morphs [18]. Their method has a rendering

time independent of scene complexity but requires a correspondence map and has trouble

filling holes when occluded parts of the scene become visible.

Light field rendering uses no correspondence maps or explicit 3D scene models. As

described earlier, new views are generated by combining andresampling the input images.

Although rendering light fields is relatively simple, acquiring them can be very challeng-

ing. Light fields typically use over a thousand input images.The original light field work

required over four hours to capture a light field of a static scene using a single translating

camera. For dynamic scenes, one must use a camera array–the scene will not hold still

while a camera is translated to each view position. Light field rendering requires many

very closely spaced images to prevent aliasing artifacts inthe interpolated views. Ideally

the camera spacing would be equal to the aperture size of eachcamera, but practically,

this is impossible. Dynamic scenes require not only multiple cameras, but also methods to

reduce the number of required input views.

The Virtualized Reality [9] work of Rander et al. uses fewer images at the expense of

increasing rendering complexity. They surround their viewing volume with cameras and

then infer the three-dimensional structure of the scene using disparity estimation or voxel

carving methods [19, 20]. Essentially, they are combining model-based and image-based

rendering. They infer a model for the scene geometry, but compute colors by resampling

the images based on the geometric model. Matusik et al. presented another view interpo-

lation method, Image Based Visual Hulls [21], that uses silhouettes from multiple views to

generate approximate structural models of foreground objects. Although these methods use

fewer, more widely separated cameras than Light Field Rendering, inferring structure using

multiple cameras is still an unsolved vision problem and leads to artifacts in the generated

views.

How should a video camera array be designed to allow experiments across this range

of view interpolation methods? At the very least, it should store all of the data from all

cameras for reasonable length videos. At video rates (30fps), scene motion, and hence the

14 CHAPTER 2. BACKGROUND

image motion from frame to frame, can be quite significant. Most methods for inferring

3D scene structure assume a rigid scene. For an array of videocameras, this condition will

only hold if the cameras are synchronized to expose at the same time. For pure image-based

methods like Light Field Rendering, unsynchronized cameraswill result in ghost images.

Light Field Rendering requires many tightly packed cameras,but Virtualized Reality and

Image Based Visual Hulls use more widely separated cameras, so clearly a flexible camera

array should support both configurations. Finally, all of these applications assume that the

cameras can be calibrated geometrically and radiometrically.

2.2.2 High-X Imaging

High-X imaging combines many single-center-of-projection images to extend imaging per-

formance. To shed light on camera array design requirementsfor this space, I will now enu-

merate several possible high-X dimensions, discuss prior work in these areas and consider

how we might implement some of them using a large array of cameras.

High-X Imaging Dimensions

High Resolution. Images taken from a single camera rotating about its opticalcenter can

be combined to create high-resolution, wide field-of-view (FOV) panoramic image mosaics

[4]. For dynamic scenes, we must capture all of the data simultaneously. Imaging Solutions

Group of New York, Inc, offers a “quad HDTV” 30 frame-per-second video camera with a

3840 x 2160 pixel image sensor. At 8.3 megapixels per image, this is the highest resolution

video camera available. This resolution could be surpassedwith a 6 x 5 array of VGA

(640 x 480 pixel) cameras with abutting fields of view. Many companies and researchers

have already devised multi-camera systems for generating video mosaics of dynamic scenes

[22]. Most pack the cameras as closely together as possible to approximate a SCOP system,

but some use optical systems to ensure that the camera centers of projection are actually

coincident. As the number of cameras grow, these optical systems become less practical.

If the goal is just wide field of view or panoramic imaging, butnot necessarily high

resolution, then a single camera can be sufficient. For example, the Omnicamera created

by Nayar uses a parabolic mirror to image a hemispherical field of view [23]. Two such

2.2. VIEW INTERPOLATION AND HIGH-X IMAGING 15

cameras placed back-to-back form an omnidirectional camera.

Low Noise. It is well known that averaging many images of the same scene reduces image

noise (measured by the standard deviation from the expectedvalue) by the square root of

the number of images, assuming the noise is zero-mean and uncorrelated between images.

Using an array of 100 cameras in SCOP mode, we should be able to reduce image noise by

a factor of 10.

Super-Resolution. It is possible to generate a higher resolution image from a set of dis-

placed low-resolution images if one can measure the camera’s point spread function and

register the low-resolution images to sub-pixel accuracy [24]. We could attempt this with

an array of cameras. Unfortunately, super-resolution is fundamentally limited to less than

a two-fold increase in resolution, and the benefits of more input images drops off rapidly

[25, 26], so abutting fields of view is generally a better solution for increasing image res-

olution. On the other hand, many of the high-X methods listedhere use cameras with

completely overlapping fields of view, and we should be able to achieve a modest resolu-

tion gain with these methods.

Multi-Resolution Video. Multi-resolution video allows high-resolution (spatially or tem-

porally) insets within a larger lower-resolution video [27]. Using an array of cameras with

varying fields of view, we could image a dynamic scene at multiple resolutions. One use

of this would be to provide high-resolution foveal insets within a low-resolution panorama.

Another would be to circumvent the limits of traditional super-resolution. Information

from high-resolution images can be used to increase resolution of a similar low-resolution

image using texture synthesis [28], image alignment [29], or recognition-based priors [26].

In our case, we would use cameras with narrower fields of view to capture representative

portions of the scene in higher resolution. Another versionof this would be to combine

a high-speed, low-resolution video with a low-speed, high-resolution video (both captured

using high-X techniques) to create a single video with higher frame rate and resolution.

16 CHAPTER 2. BACKGROUND

High Dynamic Range. Natural scenes often have dynamic ranges (the ratio of brightest

to darkest intensity values) that far exceed the dynamic range of photographic negative film

or the image sensors in consumer digital cameras. Areas of a scene that are too bright

saturate the film or sensor and look uniformly white, with no detail. Regions that are too

dark can be either be drowned out by noise in the sensor or simply not detected due to

the sensitivity limit of the camera. Any given exposure onlycaptures a portion of the total

dynamic range of the scene. Mann and Picard [2], and Debevec and Malik [3] show ways to

combine multiple images of a still scene taken with different known exposure settings into

one high dynamic range image. Using an array of cameras with varying aperture settings,

exposure durations, or neutral density filters, we could extend this idea to dynamic scenes.

High Spectral Sensitivity. Humans have trichromatic vision, meaning that any incident

light can be visually matched using combinations of just three fixed lights with different

spectral power distributions. This is why color cameras measure three values, roughly

corresponding to red, green and blue. Multi-spectral images sample the visible spectrum

more finely. Schechner and Nayar attached a spatially varying spectral filter to a rotating

monochrome camera to create multi-spectral mosaics of still scenes. As they rotate their

camera about its center of projection, points in the scene are imaged through different

regions of the filter, corresponding to different portions of the visible spectrum. After

registering their sequence of images, they create images with much finer spectral resolution

than the three typical RGB bands. Using an array of cameras with different band-pass

spectral filters, we could create multi-spectral videos of dynamic scenes.

High Depth of Field. Conventional optical systems can only focus well on objects within

a limited range of depths. This range is called the depth of field of the cameras, and it

is determined primarily by the distance at which the camera is focused (depth of field

increases with distance) and the diameter of the camera aperture (larger apertures result in

a smaller depth of field). For static scenes, depth of field canbe extended using several

images with different focal depths and selecting, for each pixel, the value from the image

in which is is best focused [30]. The same principle could be applied to a SCOP camera

array. One challenge is that depth of field is most limited close to the camera, where the

2.2. VIEW INTERPOLATION AND HIGH-X IMAGING 17

SCOP approximation for a camera array breaks down. Successfully applying this method

would require either an optical system that ensures a commoncenter of projection for the

cameras or sophisticated image alignment algorithms.

Large Aperture. In chapter 4, I describe how we use our camera array as a large syn-

thetic aperture camera. I have already noted that the very narrow depth of field caused

by large camera apertures can be exploited to look beyond partially occluding foreground

objects, blurring them so as to make them invisible. In low-light conditions, large apertures

are also useful because they admit more light, increasing the signal-to-noise ratio of the

imaging system. This is the one high-X application that is deliberately not single-center-

of-projection. Instead, it relies on slightly different centers of projection for all cameras.

High Speed. Typical commercial high-speed cameras run at frame rates ofhundreds to

thousands of frames per second, and high-speed video cameras have been demonstrated

running as high as one million frames per second [31]. As frame rates increase for a fixed

resolution, continuous streaming becomes impossible, limiting users to short recording du-

rations. Chapter 5 discusses in detail high-speed video capture using the Stanford Multiple

Camera Array. Here, I will just reiterate that we use many sensors with evenly staggered

triggers, and that parallel capture (and compression) permits continuous streaming.

Camera Array Design for High-X Imaging

A camera array for High-X imaging should allow all of the fine control over various camera

parameters required by traditional single-camera applications but also address the issues

that arise when those methods are extended to multiple cameras. For multiple-camera

high-x applications, the input images should generally be views of the same scene at the

same time from the same position, from cameras that respond identically to and capture

the same range of intensities. Thus, the cameras should be designed to be tightly packed

to approximate a single center of projection, synchronizedto trigger simultaneously, and

configured with wholly overlapping fields of view. Furthermore, we must set their exposure

times and color gains and offsets to capture the same range ofintensities. None of these

18 CHAPTER 2. BACKGROUND

steps can be done perfectly, and the cameras will always vary, so we will need to calibrate

geometrically and radiometrically to correct residual errors.

For most high-x applications, at least one parameter must beallowed to vary, so a cam-

era array should also support as much flexibility and controlover as many camera properties

as possible. In fact, we find reason to break every guideline listed above. For example, to

capture high dynamic range images, we configure the cameras to sense varying intensity

ranges. Synthetic aperture photography explicitly defies the SCOP model to capture multi-

ple viewpoints. To use the array for high-resolution capture, we must abut the fields of view

instead of overlapping them. Finally, high-speed imaging relies on precisely staggered, not

simultaneous, trigger times. Flexibility is essential.

2.3 Inexpensive Image Sensing

Nearly all of the applications and arrays presented so far used relatively high quality cam-

eras. How will these applications map to arrays of inexpensive image sensors? Cheap

image sensors are optimized to produce pictures to be viewedby humans, not by comput-

ers. This section discusses how cheap sensors exploit our perceptual insensitivity to certain

types of imaging errors and the implications of these optimizations for high performance

imaging.

2.3.1 Varying Color Responses

The vast majority of image sensors are used in single-cameraapplications where the goal

is to produce pleasing pictures, and human color perceptionsenses relative differences

between colors, not absolute colors [32]. For these reasons, manufacturers of image sensors

are primarily concerned with only the relative accuracy of their sensors. Auto-gain and

auto-exposure ensure the image is exposed properly, and white balancing algorithms adjust

color gains and the output image to fit some assumption of the color content of the scene.

These feedback loops automatically compensate for any variations in the sensor response

while they account for external factors like the illumination. Without a reference, it is often

difficult for us to judge the fidelity of the color reproduction.

2.3. INEXPENSIVE IMAGE SENSING 19

For IBR and high-X applications that use just one camera to capture multiple images,

the actual shape of the sensor’s response curve (i.e. digital pixel value as a function of

incident illumination), and its response to light of different wavelengths, are unimportant

as long as they are constant and the response is monotonic. With multiple cameras, differ-

ences in the absolute response of each camera become relative differences between their

images. These differences can be disastrous if the images are directly compared, either by a

human or an algorithm. A panoramic mosaic stitched togetherfrom cameras with different

responses will have an obviously incorrect appearance, even if each region viewed indi-

vidually looks acceptable. Methods that try to establish corresponding scene points in two

images often assume brightness constancy, meaning that a scene point appears the same

in all images of it. Correcting the color differences betweencameras is essential for these

applications.

Because so few end users care about color matching between sensors, variations in color

response between image sensors are poorly documented. In practice, these differences can

be quite large. In chapter 5, I will show that for the image sensors in the array, the color

responses of 100 chips set to the same default gain and exposure values varies quite widely.

2.3.2 Color Imaging and Color Filter Arrays

One key result of color science is that because the human eye has only three different

types of cones for detecting color, it is possible to represent all perceptually discernible

colors with just three primaries, each having linearly independent spectral power distribu-

tions. Practically, this means that color image sensors only need to measure the incident

illumination using detectors with three appropriately chosen spectral responses instead of

measuring the entire spectra. Typically, these responses correspond roughly to what we per-

ceive as red, green and blue. Each pixel in an image sensor makes only one measurement,

so some method must be devised to measure three color components.

High-end color digital cameras commonly use three image sensors and special optics

that send the incident red light to one sensor, the green to another, and the blue to a third.

This measures three color values at each pixel, but the extraimage sensors and precisely

aligned optics increase the total cost of camera.

20 CHAPTER 2. BACKGROUND

G B

GR

G B

GR

G B

GR

G B

GR

G B

GR

G B

GR

G B

GR

G B

GR

G B

GR

Figure 2.2: The Bayer Mosaic color filter array. Each pixel senses only one of red, green
or blue. Missing color values must be interpolated from neighboring pixels.

Inexpensive, single-chip color cameras use one image sensor with a color filter array

on top of the pixels. Instead of measuring red, green and bluevalues at each pixel, they

measure red, greenor blue. One example filter array pattern, the Bayer Mosaic [33],is

shown in figure 2.2. The pattern exploits two properties of human visual perception: we

are more sensitive to high frequency luminance informationthan chrominance, and our

perception of intensity depends most heavily on green light. Every other pixel has a green

filter, and the remaining two quarters are split between red and blue. Compared to the

three-chip solution, two thirds of the color information islost at each pixel.

Mosaic images must be “demosaiced”, or interpolated, to generate a three-color RGB

values at each pixel. Naive methods to interpolate the missing color values, like simple

nearest neighbor replication or bilinear interpolation, can cause severe aliasing and false

colors near intensity edges. Adaptive algorithms [34, 35] perform better at edges, but

because the problem is ill-posed, no method will always be free of artifacts. These artifacts

can be both visually objectionable and troubling for visionalgorithms.

2.3.3 Inexpensive Manufacturing Methods

Manufacturing processes for cheap cameras are less precisethan for expensive cameras.

Wider variations in device performance are tolerated in order to increase yields, meaning

that image quality will suffer. For example, noisier image sensors may not be culled during

production, and wider color variations will be tolerated, as mentioned previously. As we

will see in later sections on camera calibration, standard camera models assume an image

2.3. INEXPENSIVE IMAGE SENSING 21

plane that is perpendicular to the lens’ optical axis. On inexpensive sensors, however, the

dies may be tilted and rotated on the package, violating thatmodel.

The optical systems for cheap cameras are also of lower quality. Although glass lenses

produce better images, very cheap cameras use plastic lenses or hybrid glass-plastic lenses

instead. Furthermore, avoiding artifacts such as spherical and chromatic aberration requires

multiple lens elements, which will be less precisely placedin a cheap sensor. Less precise

placement will cause distortions in the image and more inconsistencies between the camera

and commonly used models. Finally, high-quality lenses provide adjustments to control the

aperture size and focal length, but in inexpensive lenses, these quantities are fixed.

In the next chapter, I describe the Stanford Multiple Camera Array and the design de-

cisions I made in its implementation. One goal for the systemwas to use cheaper, lower-

quality components and compensate for their drawbacks in software where possible. Thus,

we chose fixed-focus, fixed-aperture lenses for their affordability. Similarly, the decreased

cost and complexity of designing single-chip color camerasoutweighed the disadvantages

of subsampled color due to the Bayer Mosaic. These are two examples of the many trade-

offs involved in the design of the array.

22 CHAPTER 2. BACKGROUND

Chapter 3

The Stanford Multiple Camera Array

The broad range of applications for camera arrays combined with the promise of inex-

pensive, easy to use, smart cameras and plentiful processing motivated exploration of the

potential of large arrays of cheap cameras. In this chapter,I present a scalable, general-

purpose camera array that captures video continuously fromover 100 precisely-timed cam-

eras to just four PCs. Instead of using off-the-shelf cameras, I designed custom ones, lever-

aging existing technologies for our particular goals. I chose CMOS image sensors with

purely digital interfaces so I could easily control the gain, exposure and timing for all the

cameras. MPEG2 video compression at each camera reduces thedata bandwidth of the sys-

tem by an order of magnitude. High-speed IEEE1394 interfaces make the system modular

and easily scalable. Later chapters show the array being used in a variety of configurations

for several different applications. Here, I explain the technology that makes this possible.

3.1 Goals and Specifications

The Stanford Multiple Camera Array is intended to be a flexibleresearch tool for exploring

applications of large numbers of cameras. At the very least,I wanted to be able to imple-

ment IBR and High-X methods similar to those described in the previous chapter. This

requires large numbers of cameras with precise timing control, the ability to tightly pack or

widely space the cameras, and low-level control over the camera parameters. For the de-

vice to be as general as possible, it should capture and storeall data from all the cameras. I

23

24 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

also wanted the architecture to be modular and easily scalable so it could span applications

requiring anywhere from a handful to over one hundred cameras. One implication of this

scalability was that even though the array might have over one hundred cameras, it should

use far fewer than one hundred PCs to run it, ideally just a handful. Finally, reconfiguring

the array for different applications should not be a significant obstacle to testing out new

ideas.

To begin quantifying the specifications of our array, I started with the same video reso-

lution and frame rate as the 3D Room: 640x480 pixel, 30fps progressive scan video. 30fps

is generally regarded as the minimum frame rate for real-time video, and 640x480 is suit-

able for full-screen video. To demonstrate scalability, I aimed for a total of 128 cameras. To

record entire performances, I set a goal of recording video sequences at least ten minutes

long.

No off-the-shelf solution could meet these design goals. The cameras had to be tiny and

provide a means to synchronize to each other. I also wanted tobe able to control and stream

video from at least 30 of the cameras to a single PC. There simply were no cameras on the

market that satisfied these needs. By building custom cameras, I was able to explicitly add

the features I needed and leave room to expand the abilities of the cameras in the future.

3.2 Design Overview

The Stanford Multiple Camera array streams video from many CMOS image sensors over

IEEE1394 buses to a small number of PCs. Pixel data from each sensor flows to an FPGA

that routes it to local DRAM memory for storage or to an IEEE1394 chipset for transmis-

sion to a PC. The FPGA can optionally perform low-level image processing or pass the

data through an MPEG encoder before sending it to the 1394 chipset. An embedded mi-

croprocessor manages the components in the camera and communicates with the host PCs

over IEEE1394. In this section, I describe the major technologies used in the array: CMOS

image sensors, MPEG video compression, and IEEE1394 communication.

3.2. DESIGN OVERVIEW 25

3.2.1 CMOS Image Sensors

One of the earliest decisions for the array was to use CMOS instead of CCD image sensors.

CCDs are fully analog devices, requiring more careful design,supporting electronics to

digitize their output, and often multiple supply voltages or clocks. CMOS image sensors,

on the other hand, generally run off standard logic power supplies, can output 8-or 16 bit-

digital video, and can connect directly to other logic chips. Sensor gains, offsets, exposure

time, gamma curves and more can often be programmed into registers on the chip using

standard serial interfaces. Some CMOS sensors even have digital horizontal and vertical

sync inputs for synchronization. These digital interfacesmake the design simpler and more

powerful. Immediate practical concerns aside, because digital logic can be integrated on

the same chip, CMOS sensors offer the potential of evolving into “smart” cameras, and it

seemed sensible to base our design on that technology.

The many advantages of using CMOS sensors come with a price. CMOS sensors are

inherently noisier [36] and less sensitive than their CCD counterparts. For these reasons,

CCD sensors are still the technology of choice for most high performance applications

[37]. I decided to sacrifice potential gains in image qualityin exchange for a much more

tractable design and added functionality.

3.2.2 MPEG2 Video Compression

The main goals for the array are somewhat contradictory: it should store all of the video

from all of our cameras for entire performances, but also scale easily to over one hundred

cameras using just a handful of PCs. An array of 128, 640x480 pixel, 30fps, one byte per

pixel, Bayer Mosaic video cameras generates over 1GB/sec of raw data, roughly twenty

times the maximum sustained throughput for today’s commodity hard drives and peripheral

interfaces. The creators of the 3D Room attacked this problemby storing raw video from

cameras to main memory in PCs. With 49 cameras and 17 PCs with 512MB of main

memory, they were able to store nearly 9 seconds of video. To capture much longer datasets

using far fewer PCs, I took a different approach: compressingthe video.

One video compression option for the array was DCT-based intra-frame video encoding

26 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

like DV. Commercial DV compression hardware was either too costly are simply unavail-

able when I built the array. MPEG2 uses motion prediction to encode video with a much

higher compression ratio, and Sony, one of the early sponsors of this work, offered their

MPEG2 compression chips at a reasonable price. A relativelystandard 5Mb/s bitstream

for 640x480, 30fps video translates into a compression ratio of 14:1, and at 4Mb/s, the

default for the Sony encoder, this results in 17.5:1 compression. 128 cameras producing

5Mb/s bitstreams create 80MB/s of data, back in the ballpark of bandwidths we might

hope to get from standard peripheral buses and striped hard drives. The disadvantage of

MPEG compression is that it is lossy, meaning that one cannotexactly reproduce the orig-

inal uncompressed video. I opted to use it anyway, but in order to investigate the effects of

compression artifacts I designed the cameras to simultaneously store brief segments of raw

video to local memory while streaming compressed video. This lets one compare MPEG2

compressed video with raw video for array applications.

3.2.3 IEEE1394

The last piece of the array design was a high bandwidth, flexible and scalable means to

connect cameras to the host PCs. I chose the IEEE1394 High Performance Serial Bus [38],

which has several properties that make it ideal for this purpose. It guarantees a default

bandwidth of 40MB/s for “isochronous” transfers, data that is sent at a constant rate. This

is perfect for streaming video, and indeed many digital video cameras connect to PCs via

IEEE1394 (also known as FireWireR© and i-LinkR©). IEEE1394 is also well suited for a

modular, scalable design because it allows up to 63 devices on each bus and supports plug

and play. As long as the bandwidth limit for a given bus is not exceeded, one can add or

remove cameras at will and the bus will automatically detectand enumerate each device.

Another benefit of IEEE1394 is the cabling environment. IEEE1394 cables can be up to

4.5m long, and an entire bus can span over 250m, good news if wewant to space our

cameras very widely apart, say on the side of a building.

The combination of MPEG2 and IEEE1394 creates a natural “sweet spot” for a large

camera array design. A full bus can hold 63 devices; if we set aside one device for a

host PC, it can still support up to 62 cameras. 62 MPEG2 video streams at 5Mb/s add

3.3. SYSTEM ARCHITECTURE 27

up to 310Mb/s of data, just within the default 320Mb/s limit of the bus. 320Mb/s is also

well within the bandwidth of two software striped IDE hard drives, so this setup means

I could reasonably hope to require only one PC per 60 cameras in our architecture. For

reasons I will discuss later, the current system supports only 25 cameras per PC with 4Mb/s

bitstreams, but a more sophisticated implementation should be able to approach a full set

of 62 cameras per bus.

3.3 System Architecture

To be scalable and flexible, the system architecture had to not only meet the video capture

requirements but also easily support changes in the number of cameras, their functionality,

and their placement. Each camera is a separate IEEE1394 device, so adding or removing

cameras is simple. I embedded a microprocessor to manage theIEEE1394 interface, the

image sensor and the MPEG encoder. Accompanying the processor is an EEPROM for a

simple boot loader and DRAM memory for storing image data and an executable down-

loaded over the IEEE1394 bus. The image sensor, MPEG encoderand IEEE1394 chips all

have different data interfaces, so I added an FPGA for glue logic. Anticipating that I might

want to add low-level image processing to each camera, I useda higher-performance FPGA

than necessary and connected it to extra SRAM and SDRAM memory.Because the timing

requirements for the array were stricter than could be achieved using IEEE1394 commu-

nication, especially with multiple PCs, I added CAT5 cables toeach camera to receive the

clock and trigger signals and propagate them to two other nodes. All of these chips and

connections take up more board area than would fit on a tiny, densely-packable camera, so

I divided the cameras into two pieces: tiny camera “tiles” containing just the image sensor

and optics, and larger boards with the rest of the electronics.

Figure 3.1 shows how the cameras are connected to each other and to the host PCs using

a binary tree topology. One camera board is designated as theroot camera. It generates

clocks and triggers that are propagated to all of the other cameras in the array. The root

is connected via IEEE1394 to the host PC and two children. TheCAT5 cables mirror the

IEEE1394 connections between the root camera and the rest ofthe array. When camera

numbers or bandwidth exceed the maximum for one IEEE1394 bus, we use multiple buses,

28 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

Cameras
with
Host PC

Disk Array

Figure 3.1: Camera array architecture

each connected to their own host PC. In this case, only one bus holds the root camera, and

the clock and trigger signals are routed from it to the entirearray.

3.3.1 Camera Tiles

For the camera tile, I looked for a digital, color, 640x480 pixel, 30fps image sensor with

synchronization inputs. The SONY MPEG encoder requires YUV422 format input, but

for research purposes, I also wanted access to the raw RGB Bayerdata. The Omnivision

OV8610 was the only sensor that met these needs. The OV8610 provides 800x600 pixel,

30fps progressive scan video. Our MPEG encoder can handle atmost 720x480 pixel video,

but currently we use only 640x480, cropped from the center ofthe OV8610 image. The

OV8610 has a two-wire serial interface for programming a host of registers controlling

exposure times, color gains, gamma, video format, region ofinterest, and more.

Early on, I considered putting multiple sensors onto one printed circuit board to allow

very tight packing and to fix the cameras relative to each other. I had hoped that the rigid

positioning of the cameras would make them less likely to move relative to each other after

geometric calibration. I constructed a prototype to test this arrangement and found that

any gains from having the cameras rigidly attached were morethan offset by the reduced

degrees of freedom for the positioning and orienting the cameras. Verging individually

mounted cameras by separately tilting each one is easy. Thisis not possible with multiple

3.3. SYSTEM ARCHITECTURE 29

Figure 3.2: A camera tile.

sensors on the same flat printed circuit board without expensive optics. Manufacturing vari-

ations for inexpensive lenses and uncertainty in the placement of image sensor of a printed

circuit board also cause large variations in the orientation of the cameras. The orientations

even change as the lenses are rotated for proper focus. Correcting these variations requires

individual mechanical alignment for each camera.

The final camera tile is shown in figure 3.2. Two meter long ribbon cables carry video,

synchronization signals, control signals, and power between the tile and the processing

board. The tile uses M12x0.5 lenses and lens mounts, a commonsize for small board cam-

eras (M12 refers to the thread pitch, and 0.5 to the radius of the lens barrel in centimeters).

The lens shown is a Sunex DSL841B. These lenses are fixed focus and have no aperture

settings. For indoor applications, one often wants a large working volume viewable from

all cameras, so I chose a lens with a small focal length, smallaperture and large depth of

field. The DSL841B has a fixed focal length of 6.1mm, a fixed aperture F/# of 2.6, and a di-

agonal field of view of 57◦. For outdoor experiments and applications that require narrow

field of view cameras, we use Marshall Electronics V-4350-2.5 lenses with a fixed focal

length of 50mm, 6◦ diagonal field of view, and F/# of 2.5. Both sets of optics include an

IR filter.

The camera tiles measure only 30mm on a side, so they can be packed very tightly.

They are mounted to supports using three spring-loaded screws. These screws not only

hold the cameras in place but also let one fine-tune their orientations. The mounts let us

30 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

Figure 3.3: 52 cameras on a laser-cut acrylic mount.

correct the direction of the camera’s optical axis (which way it points), but not rotations

around the axis caused by a slightly rotated image sensor.

The purpose of the mounting system is not to provide precise alignment, but to ensure

that the cameras have enough flexibility so we align them roughly according to our needs,

then correct for variations later in software. Being able to verge the cameras sufficiently

is critical for maintaining as large a working volume as possible, or even ensuring that all

cameras see at least one common point. Image rotations are less important because they

do not affect the working volume as severely, but as we will see later, they do limit the

performance of our high speed video capture method.

For densely packed configurations such as in figure 3.3, the cameras are mounted di-

rectly to a piece of laser cut acrylic with precisely spaced holes for cables and screws. This

fixes the possible camera positions but provides very regular spacing. Laser cutting plas-

tic mounts is quick and inexpensive, making it useful for prototyping and experimenting.

For more widely spaced arrangements, the cameras are connected to 80/20 mounts using

a small laser-cut plastic adaptor. 80/20 manufactures whatthey call the “Industrial Erec-

tor Set”R©, a T-slotted aluminum framing system. With the 80/20 system, we can create

different camera arrangements to suit our needs. Figure 3.4below shows some of the

arrangements built with this system.

3.3. SYSTEM ARCHITECTURE 31

Figure 3.4: Different array configurations using 80/20 mounts.

Figure 3.5: Camera processing board

32 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

3.3.2 Processing Boards

The processing board for each camera represents the bulk of the cost, functionality and

design effort for the camera array. The board can capture 20 frames of raw video to local

memory and stream raw or MPEG-compressed video to the host PC.Because there are

many ways to design a board for a given functionality, I will cover the functionality and

hardware choices at a high level and delve into details only for aspects of the design that

enable unique features of the array (such as the timing accuracy) or made it particularly

useful for research purposes.

Figure 3.5 shows the processing board. Each of these boards manages just one image

sensor. The major components were chosen to maximize performance at reasonable design

and manufacturing cost. The SONY CXD1922Q MPEG2 encoders were obtained at a

discount for this project. I chose a Texas Instruments chipset for the IEEE1394 interface

because they were a clear market leader at the time. These chips claim a glueless interface

to Motorola Coldfire processors, so I selected a Motorola MCF5206E processor to manage

the IEEE1394 chipset and MPEG encoder. I included 32MB of EDODRAM, the maximum

the processor supports, because this sets the limit on how much raw data each camera

can capture. An IDT72V245 8KB FIFO buffers data between the IEEE1394 streaming

interface and the rest of the board.

A Xilinx XC2S200 Spartan II FPGA along with a pair of 64Mbit SDRAMs and a pair

of 4Mbit SRAMs provides glue logic between the different chips and some low-level pro-

cessing power. FPGAs, (Field Programmable Gate Arrays), are configurable logic chips.

They do not fetch instructions like microprocessors. Instead, they are a sea of identical,

generic logic blocks with programmable functions and interconnect. A bitfile streamed

into the FPGA configures the function of each logic block and the connections between

blocks. The bitfile is specified using a behavioral language like Verilog. This specification

is more complicated than programming a processor in C for thedesigner, but is necessary

to handle non-standard data interfaces and to process videoin real-time.

Figure 3.6 shows the data flow through the processing board. To stream raw video, the

FPGA routes the incoming video straight through to the IEEE1394 chipset for isochronous

transfer back to the host PC. For MPEG2 compressed video, the sensor data is sent to

3.3. SYSTEM ARCHITECTURE 33

SENSOR
IMAGE

video

timing

control

in

out

Camera Processing Board

IEEE1394
CHIPSET

CLOCKS
TRIGGERS

SYNCS

8KB FIFO

MPEG2
ENCODERSDRAM

SRAM

FPGA

MICROPROCESSOR 32MB DRAM EEPROM

Figure 3.6: Camera processing board block diagram

the MPEG2 encoder, and the resulting bitstream is routed through the FPGA back to the

IEEE1394 chipset. The FPGA can also simultaneously stream video and capture up to

twenty uncompressed frames to the 32MB system memory using Coldfire-assisted DMA

(Direct Memory Access) transfers. The Coldfire initiates allmemory accesses to the 32MB

DRAM. Without DMA transfers, the Coldfire would have to read theraw data from the

FPGA, then write it back to the DRAM using the same data bus. In aDMA transfer, the

microprocessor signals a write to the DRAM, but the data is provided directly by the FPGA,

eliminating the unnecessary read.

3.3.3 System Timing and Synchronization

The precise timing control over each camera in the Stanford Multiple Camera Array opens

up new research avenues that will be explored in the rest of this thesis. The cameras in

the 3D-Room and Virtualized Reality are synchronized using “Genlock,” the most com-

mon off-the-shelf solution for camera synchronization. Genlock is an analog protocol that

34 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

provides synchronization with coincident triggers, not arbitrary timing, and is too costly

for inexpensive cameras. This is why the Dynamic Light FieldViewer, constructed of

inexpensive webcams, is not synchronized.

The Stanford Multiple Camera Array provides accurate timingwith arbitrary phase

shifts between camera triggers using the FPGAs and dedicated clock and trigger lines that

run through the entire array. The one root board in the array generates its own 27MHz

clock and sends it to two children via CAT5 cables, which then buffer the clock and send

it to two more children, and so on. The root board is identicalto the other camera boards

except for the code in one GAL and a single jumper setting. A PLL on each board uses

the system clock to generate duty-cycle corrected, 27MHz and 54MHz clocks. The MPEG

encoders require a 27MHz clock, but we run the microprocessors and FPGAs twice as fast

to maximize their performance.

The clock is not used for data transmission between boards, so delay from camera to

camera is unimportant. The shared clock only ensures that all boards are frequency-locked.

It is possible that the duty cycle degrades with each buffering of the clock, but the board

components require a 45%−55% duty cycle. This is one reason the cameras propagate a

27MHz clock, then double it on the board with a PLL. Preserving the 27MHz duty cycle is

also easier because the period is twice as long, and the PLL ensures a 50% duty cycle on the

processing boards. Propagating the system clock using a minimal depth binary tree routing

topology preserves the duty cycle by ensuring a bound of log2N hops from the root board

to any camera, as opposed to N-1 for a daisy-chained system. We also invert the sense of

the clock each time it is buffered, so systematic duty cycle offsets in the clock propagation

circuitry are roughly cancelled. In practice, this system works quite well. The maximum

depth of our tree for a 100 camera array is eight levels, and wehave tested daisy-chained

configurations with more than 16 cameras with no problems.

Frequency-locked system clocks prevent our cameras from drifting relative to each

other. The FPGAs on each board generate vertical and horizontal synchronization signals

for the image sensors and the MPEG2 encoders. The encoders actually drive the system

timing because their requirements are very exact—NTSC timing based on a 525 line-per-

image video with a 27MHz clock. The FPGAs timing units run theimage sensors and

MPEG encoders at exactly the same frame rate. With a common system clock, this means

3.3. SYSTEM ARCHITECTURE 35

that all the sensors and encoders run at exactly the same frequency.

Synchronization is more than just preventing frequency drift. We also need to set the

relative timing of the cameras’ exposures and the frame on which the cameras start and stop

capturing video. The timing of IEEE1394 transfers, especially from multiple networked

PCs, is simply too uncertain for the accuracy we need in our system, so I put that control

directly into our hardware. The same CAT5 cables that carry the clock transmit global

triggers from the root board to the rest of the array. These signals route directly to the

FPGAs on the boards. They control the initial synchronization or staggering of the sensor

shutter timing and the frame-accurate start of all video streaming or snapshots.

Video timing initialization is a good example of how to execute timing-sensitive com-

mands for the camera array. The FPGAs use two video counters to drive the vertical and

horizontal inputs of the image sensors and MPEG2 encoders. Thepixel counter rolls over

when it reaches the number of pixels in a line, causing theline counter to increment. The

line counter rolls over at 525 lines, signaling a new frame. Once these counters have been

initialized, they run without drift across the entire arraybecause of the common system

clock. The reset values for the line counters is a programmable register on the FPGA,

accessible via an IEEE1394 command to the board.

To set up arbitrary time shifts between cameras, we program different values into the

line counter reset registers, send a command which instructs the boards to reset their coun-

ters on the next rising trigger signal, and then tell the rootboard to assert the trigger. All

of the setup for all boards is done using IEEE1394 reads and writes, but the order to reset

their timers, which must be executed at the same time by all cameras, is sent just to the root

board. The root board then asserts the trigger signal for theentire array. The inaccuracy of

the camera synchronization is limited to the electrical delay propagating the trigger to all

of the boards. For the 100-camera array, this is less than 150ns, or roughly the time to scan

out four pixels from the image sensor.

3.3.4 Developer Interface to the Boards via IEEE1394

A flexible mounting system and low-level camera control makeit easy to experiment with

different applications, but we also need a development environment that facilitates adding

36 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

new features to the cameras. I took advantage of the IEEE1394bus to make prototyping

quick and easy. After power-up or a board reset, the Coldfire executes simple boot code

which configures the microprocessor memory and the IEEE1394interface. The host PC

then downloads FPGA bitfiles and a more sophisticated Coldfireexecutable from the PC

via IEEE1394. Adding new camera features is just a matter of compiling these new files

and does not require modifications to the physical hardware (i.e. programming GALs or

boot ROMs). This is critical for an array of 100 cameras.

A simple bootloader and downloadable executables and bitfiles makes iterating design

changes easy. Other goals for the design environment were toimplement as much as pos-

sible on the host PC using a familiar C development environment, keep the downloaded

executable simple, and expose as much of the camera state as possible to the user. Once the

final executable has been downloaded, the important state ineach camera is mapped into its

IEEE1394 address space. Using standard IEEE1394 reads and writes, one can access the

full 32MB of DRAM attached to the processor, all of the controlregisters in the MPEG2

encoder and IEEE1394 chipset, configuration registers programmed into the FPGA, and

control registers for the cameras themselves. This keeps the developer API for the array

simple—just IEEE1394 reads and writes—and makes it easy to track the state of the board

(what has been programmed into registers in the FPGA, image sensor, MPEG encoder)

from the host PC application.

3.3.5 Image Processing on the FPGA

Raw image data from the cameras almost always need to be processed before they can be

used. With this in mind, I designed the cameras for reasonable cost with as powerful an

FPGA and as much associated memory as I could. As one example of the potential of the

FPGA, we have implemented Bayer demosaicing of the raw sensordata using the Adaptive

Color Plane Interpolation algorithm of [39]. This method needs access to five adjacent

lines of raw image data, meaning the FPGA must buffer four lines of the image. Rather

than use the external memory, we use built-in BlockRAMs on the Spartan-II. These RAMs

can be used for FIFOs with up to 511 entries, so for this exercise we processed only 510-

pixel-wide images. We have also implemented arbitrary geometric warps for color images

3.3. SYSTEM ARCHITECTURE 37

using lookup tables with eighth-pixel accurate coordinates and bilinear interpolation. We

currently use this for keystone corrections so we can view live synthetic aperture video.

3.3.6 Limits due to IEEE1394 Arbitration

The maximum isochronous (streaming) data transfer rate forIEEE1394 is 320Mb/s. The

standard method for streaming data from many different IEEE1394 devices is to assign

each one a different isochronous channel number and a fixed portion of the bandwidth

in each 1394 cycle, but this turns out to be a poor strategy. One device streaming data

can achieve the maximum rate, but with many nodes, arbitration overhead will reduce the

maximum bandwidth. Devices must arbitrate before every isochronous packet is sent, and

arbitration takes longer with more nodes because signals must propagate from all nodes up

to the root and then back. Moreover, each IEEE1394 packet also has an overhead of three

quadlets (four bytes each) to describe the packet (data length, isochronous channel number,

data correction, and so on).

For an MPEG data rate of 4Mb/s (the default for our encoders),each camera must trans-

fer 66 bytes every 125us isochronous cycle. IEEE1394 packetlengths must be multiples of

four, meaning each camera must be configured to stream 68-byte packets. Adding twelve

bytes for packet overhead produces an 80-byte packet. At most, 51, 80-byte packets would

fit in the maximum of 4096 bytes per cycle. After arbitration overhead, we have found that

we can stream only 26, 4Mb/s cameras reliably. We have verified with an IEEE1394 bus

snooper that arbitration overhead is indeed the culprit preventing more packets on the bus.

Streaming such small packets each cycle from every camera produces a data file on the

host PC that is very fragmented and thus hard to process. Programs must scan through the

data 80 bytes at a time to look for data from a specific camera. To fix this difficulty and the

overhead issues, we attempted to implement an isochronous transfer scheme in which each

camera sends a full 4096-byte isochronous packet every N cycles. Each camera counts

isochronous cycles using the cycle done interrupt from the IEEE1394 chipset. Access to

the bus passes round-robin through the array, and each camera is responsible for attempting

to send data only on its dedicated cycle.

38 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

We cannot implement this scheme with 4KB packets because we have a one-cycle un-

certainty in our control over the IEEE1394 bus. Instead, we set the cameras to transmit a

2KB packet on their designated cycle. If a camera is late one cycle and transmits at the

same time as its successor, the data will still fit in the cycleand no errors will occur. This

optimization makes real-time applications much easier by fragmenting the data less and

slightly increases the number of cameras we can stream simultaneously on the bus. We are

still investigating what is necessary for cycle-accurate control of the isochronous interface.

3.3.7 Host PCs

Given the limit of roughly thirty cameras per IEEE1394 bus, 100 cameras require multiple

IEEE1394 buses. At this point, we run into another limit on our data transfer bandwidth—

the 33MHz PCI bus in our computers. The IEEE1394 adaptor is a PCIdevice, and transfer-

ring data from it to our hard drives requires two PCI transfers, one from the adaptor to main

memory, and a second to the hard drives. The transfers are both DMA-assisted, but here the

role of the DMA is just to free the processor, not to reduce PCI bus bandwidth. The max-

imum theoretical bandwidth for 33MHz PCI is 133MB/sec, but themaximum sustained

data transfer rate is much less. An aggressive estimate of 80MB/s means we are limited to

one IEEE1394 bus per computer. Thus, we need one computer forevery thirty cameras.

The currentl implementation of the array with one hundred cameras uses four host PCs

which each manage a separate IEEE1394 bus. We run a copy of thearray software on each

PC using a client/server setup where the server is the PC connected to the root board of the

array. The server issues all commands for downloading executables and code, setting up

timing, programming registers on the image sensors, recording MPEG2 compressed video,

uploading stored snapshots of raw images, and so on. The onlycommand that cannot

always be run from the server is viewing live uncompressed video from the cameras—

rather than trying to send live video across the network fromPC to PC, raw video is always

viewed on the host PC for a given camera’s IEEE1394 bus. We usea DVM switch to access

all of the machines from one keyboard and monitor.

The host PCs have been optimized for our applications but are now somewhat out-of-

date. They use IEEE1394 PCI cards and striped IDE hard drives to write incoming video

3.3. SYSTEM ARCHITECTURE 39

to disk as fast as it arrives. The PCs run RedHat Linux using the experimental IEEE1394

drivers, with one modification. The IEEE1394 specification allows up to 64 isochronous

channels on a bus, but the Linux drivers currently support only four. Each camera in

our system needs its own isochronous channel, so I modified the drivers to support the

full 64 channels. Without this capability, our cameras would have to stream on the same

isochronous channel and insert the camera number into a header in every streaming packet.

More importantly, we would have to schedule the camera data transfer explicitly instead of

relying on the IEEE1394 chipsets.

3.3.8 Design Environment

The choice of operating systems and design environments canbe a matter of taste and is

not critical to the performance of our architecture. I wouldlike to briefly mention some

choices that turned out to be both inexpensive and powerful,and to acknowledge some of

the open source software tools that made our work easier. Onedecision that worked out

well was using Jean Labrosse’sµC/OS-II real-time operating system for our embedded

microprocessors. The operating system is light-weight andeasily ported. It costs a mere

$60 and comes with a book that describes every line of the code.

Linux was helpful because the open source community developed some useful re-

sources early. We used a cross-compiler for Linux and Coldfireprocessors provided by

David Fiddes (http://sca.uwaterloo.ca/www.calm.hw.ac.uk/davidf/coldfire/gcc.htm). At the

time when we were doing most of the embedded processor code, GDB supported remote-

debugging for the Coldfire using the Background Debug Mode port, while inexpensive

Windows tools for the Coldfire did not. More information on theColdfire MCF5206E and

its Background Debug Mode can be found at [40]. Debugging our embedded IEEE1394

drivers and the application running on the host PCs was much easier in Linux because

we could step through source code for working applications to see how our devices were

expected to behave and how other applications accessed the bus.

Open source code was critical for getting isochronous streaming working with more

than four cameras. At the time, Windows did not yet have IEEE1394 drivers (this was

before Windows 2000), and some commercial IEEE1394 driversdid not even implement

40 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

Figure 3.7: The Stanford Multiple Camera Array

isochronous transfers, let alone streaming from many nodes. Fortunately, access to the

source code for the IEEE1394 drivers allowed me to implementthe driver modifications

described earlier that allowed DMA transfers from PCI IEEE1394 adaptors to main mem-

ory from multiple isochronous channels. For many aspects ofthis project, we were able to

leverage the work of others to get our machinery running sooner.

3.4 Final Specifications

Figure 3.7 shows the Stanford Multiple Camera Array set up in awidely spaced configura-

tion. This photograph shows 125 cameras, but we have only 100cameras up and running.

Aside from that detail, the system as shown is accurate. The cameras run off four PCs,

one for each of the blue cabinets holding the camera processing boards. The video and

images for the applications and analysis in the rest of this thesis were all acquired by this

3.5. FUTURE WORK 41

hardware or a subset of it in varying configurations. We can capture up to two minutes of

video from all of the cameras. This rather artificial limit isdue to the 2GB file size limit of

our operating system, but we have not yet tried to capture longer events. The total cost of

the array is roughly $600 per board.

3.5 Future Work

As the rest of this thesis will show, we have used the array in many different configurations

for several different purposes. These experiences have identified areas of the array that

could use improvement. I will briefly discuss them here before moving on to the applica-

tions.

Mounting and aiming cameras is by far the most time-consuming task for reconfiguring

the array. The mounting system is flexible, but very labor-intensive. A simple mechanical

mount that snapped in place would be nice, as would one that allowed electronic control

over the camera pan and tilt. One simple but useful addition would be an LED on the front

of each camera. For any new camera configuration, we need to identify which is which

before we can start aiming them. Right now, we identify cameras by trial and error, but

we have fabricated a new set of camera tiles with an LED that weintend illuminate from

the host to make manually or even automatically mapping the camera layout much simpler.

Once we have identified cameras, we can track them using unique IDs on the processing

boards that can be queried from the host PCs. The detachable sensor tiles do not have

IDs. If they did, we could also just label the tiles with theirID and manually determine the

camera layout. Unique camera IDs might prove useful later for keeping records of sensor

radiometric properties.

The sensors in the camera array have an electronic rolling shutter, analogous to a me-

chanical slit shutter. In chapter 5, I discuss the electronic rolling shutter, the distortions

it introduces for fast-moving objects, and how to partiallyovercome them. Interactions

between the shutter and geometric calibration make it impossible to completely overcome

the artifacts. Furthermore, synchronizing the cameras with different illuminators is not

possible. If I were to design the array again, I would use sensors with snapshot shutters.

The array has one hundred synchronized video cameras, but not a single microphone.

42 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

Synchronizing one or more microphones with the array would enable more interesting

multimedia content.

Finally, this camera array design is now several years old. Iuse four PCs to capture

the video data, but it might be possible now to use one multiprocessor PC with dual PCI-X

buses to single-handedly capture all of the array data. Currently, any real-time application I

would like to implement must account for only one quarter of the array data being available

on any one machine. Running the entire array of one host would fix that and also eliminate

all of the network synchronization in our host PC software. Faster processor buses like

PCI-X are only one way that technologies are improving. If I were to redesign the array

today, I could build it with more efficient video compressiontechnologies like MPEG-4

and new alternatives for high-speed buses, notably 800 Mb/sIEEE1394b and USB 2.0. As

data transfer rates increase, new arrays could exploit improvements in inexpensive image

sensors to capture video with greater resolution and higherdynamic range.

Chapter 4

Application #1: Synthetic Aperture

Photography

Synthetic aperture photography (SAP) is a natural use for a large camera array because it

depends on a large number of input images. As we will see, SAP is also a good starting ap-

plication because although it requires accurate geometriccamera calibration, it is relatively

forgiving of radiometric variations between cameras. The rest of this chapter describes the

synthetic aperture method in detail and explains how we geometrically calibrate our cam-

eras. I show results using the array to create synthetic aperture photographs and videos of

dynamic scenes, including a demonstration of live SAP videowith interactive focal plane

adjustment that takes advantage of the processing power in our cameras.

4.1 Description of the Method

The aperture of a camera determines its depth of field and how much light it collects. Depth

of field refers to the distance from the focal plane at which objects become unacceptably

out of focus in the image. This could be the point at which the blur is greater than one pixel,

for example. The larger the aperture, the narrower the depthof field, and vice versa. This

can be exploited to look through partially occluding objects like foliage. If a camera with a

very large aperture is focused beyond the occluder, objectsat the focal depth with be sharp

and in focus, while the objects off the focal plane will be blurred away. Although only a

43

44 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

portion of the light from the object of interest penetrates the foreground partial occluder,

their contributions all add coherently when focused by the lens on the image plane. The

result is an image of the object with reduced contrast.

Rather than actually building a camera with a one meter wide aperture, synthetic aper-

ture photography samples the light entering the effective aperture using an array of cameras.

Levoy and Hanrahan pointed out that using a camera with a given aperture size, it is pos-

sible to simulate images taken with a larger aperture by averaging together many adjacent

views, creating what they call a “synthetic aperture” [5]. Isaksen, et al. created a synthetic

aperture system using less dense camera spacings [6]. Because they used a single trans-

lating camera to capture images for their experiments, theywere limited to static scenes.

They showed with synthetic data that they could see through objects in front of their focal

surface. We are the first to use a camera array to create synthetic aperture photographs and

videos.

Figure 4.1 shows how a basic lens works. Light from a focal plane in the world is

focused by the lens onto an image plane in the camera. If an object, represented by the

dashed line, is placed in front of the focal plane, the light striking a given point on the

image plane comes from a neighborhood on the object and not one single point, causing

blur. As the object moves farther from the focal plane, the blur increases.

Figure 4.2 shows how a smaller aperture cuts out rays from theperiphery of the lens.

Eliminating these rays decreases the area on the object overwhich we collect light for a

given point in our image, meaning the object will look less blurry in the image. The depth

of field has increased—the object can be farther away from thefocal plane for the same

amount of blur. Conversely, a very large aperture will resultin a very small depth of field,

with object rapidly becoming out of focus as their distance from the focal plane increases.

As depicted in figure 4.3, synthetic aperture photography digitally simulates a wide

aperture lens by adding together the appropriate rays from multiple cameras. The camera

array and processing digitally recreate the function of thelens by integrating the light from

rays diverging from a point on the focal plane and passing through the synthetic aperture.

To do this, we need some form of geometric calibration to determine which pixels in our

images correspond to rays from a given point on the focal plane.

4.1. DESCRIPTION OF THE METHOD 45

Image PlaneFocal Plane

Figure 4.1: A basic lens system. Rays leaving a point on the focal plane are focused by
the lens onto a point on the image plane. For an object (represented by the dashed line) off
the focal plane, rays emanating from some patch of the surface will be focused to the same
point in the image, causing blur.

Image PlaneFocal Plane

Figure 4.2: A smaller aperture increases depth of field. For an object off the focal plane,
the smaller aperture means light from a smaller area of the object’s surface will reach the
image plane, reducing blur.

46 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

Focal Plane

+

Image

Figure 4.3: A synthetic aperture camera uses many cameras tosample the light crossing
the synthetic aperture. It then digitally simulates a lens by integrating measurements for
light arriving at the cameras from the same point on the desired focal plane.

4.2 Geometric Calibration

The degree of calibration required for synthetic aperture photography depends on the de-

sired focal surfaces. As Isaksen et al. [6] note, synthetic aperture photography is not limited

to a single focal plane–one could create an image with different regions focused at differ-

ent depths, or use curved or otherwise non-planar focal surfaces. Arbitrary surfaces require

full geometric camera calibration–a mapping from pixel locations in each image to rays

in the world. If we restrict ourselves to sets of parallel focal planes (similar to a regular

camera), then much simpler calibration methods suffice [7].Here, I review camera mod-

els and geometric camera calibration, then explain the simpler homographies and plane +

parallax calibration we use for synthetic aperture photography and the other multi-camera

applications in this thesis.

4.2.1 Full Geometric Camera Calibration

Full geometric camera calibration determines how the three-dimensional(X ,Y,Z) “world

coordinates” of a point in our scene map to the two-dimensional (x,y) pixel coordinates

of its location in an image. In practice, this is done using a mathematical pinhole camera

4.2. GEOMETRIC CALIBRATION 47

principal axis

imagecamera
center plane

X

Z

X

C

Y

x

x
y

p

Figure 4.4: The pinhole camera model. The image of a world point is at the intersection of
the image plane with the line joining the point and the cameracenter.

model [41], shown in figure 4.4. The image of a world point is atthe intersection of the

image plane with the line joining the camera center and the world point. This operation

is called a “projection,” and the camera center is also knownas the “center of projection.”

The line passing through the camera center and perpendicular to the image plane is called

the “principal axis.” The intersection of the principal axis and the image plane,p, is called

the “principal point.”

The pinhole camera model is divided into the intrinsic and extrinsic parameters. The

intrinsic parameters relate the location of points in the camera’s coordinate system to image

coordinates. In the camera’s coordinate system, the cameracenter is the origin, thez-axis

is the principal axis, and thex andy axes correspond to the image planex andy axes, as

shown (the image planex andy axes are assumed to be orthogonal). In these coordinates,

48 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

Z

Y

C
p

fY/Z

f

X

Figure 4.5: Pinhole camera central projection. In camera coordinates, the mapping from
any point to its projection on the image plane is(X ,Y,Z) → (f X/Z, fY/Z)

the mapping from any point to its projection on the image plane is simply

(X ,Y,Z) → (f X/Z, fY/Z)

Here, f is the focal length, the distance from the camera center to the image plane. Figure

4.5 shows this in one dimension.

The projection just described gives the(X ,Y) coordinates of the projection of a point

onto the pinhole camera image plane. To relate this to image coordinates, we first need to

divide these coordinates by the pixel size. Equivalently, we can express the focal length

f in units of the pixel size. To account for the shift between the (0,0) image coordinate

(which is usually at the bottom left corner of the image) and the image of the principal axis

(which is roughly in the center), we add a principal point offset(px, py). This gives the

mapping

(X ,Y,Z) → (f X/Z + px, fY/Z + py)

The extrinsic properties of a camera, or its “pose”, describe its location and orientation

in world coordinates. Mathematically, it is a transformation between world and camera

coordinates. If the camera center isC, and the rotation matrixR is a 3x3 rotation matrix

that represents the camera coordinate frame orientation, then a world coordinateXworld

maps to camera coordinatesXcam according to

Xcam = R(Xworld −C)

4.2. GEOMETRIC CALIBRATION 49

Letting t = −RC, this can be expressed more simply as:

Xcam = RXworld + t

The extrinsic parameters for the pinhole camera model have six degrees of freedom–

three for the translationt, and three for the rotation matrixR. Although the matrix has nine

entries, there are only three degrees of freedom, corresponding to roll, pitch and yaw. The

intrinsic properties of the camera have three degrees of freedom: the focal lengthf , and

the location of the principal point(xp,yp). More general camera models that account for

non-square pixels will use two focal lengths,fx and fy, to express the focal lengths in terms

of the pixel width and height. Finally, the most general models will also include a “skew”

parameters that accounts for non-orthogonal image axes. This will not happen for normal

cameras, so this parameter is usually zero. Neglectings, we now have a ten degree of

freedom model that relates world coordinates to image coordinates by transforming world

to camera coordinates, then projecting from camera to imagecoordinates.

Configuring cameras to exactly match a specific camera model isnearly impossible,

so in practice one always sets up the cameras and then calibrates them to determine the

model parameters. Much work has been done on how to calibratecameras from their

images. Early approaches used images of a three-dimensional calibration target [42, 43].

The calibration targets have easily detectable features, like the corners of a black and white

checkerboard pattern, at known world coordinates. Zhang developed a method that requires

multiple images of a planar calibration target [44]. Planartargets are more convenient

because they can be easily created using a laser printer. Allof these methods attempt to

minimize the error between imaged feature coordinates and coordinates predicted from the

model.

To perform full calibration for our array, we use a method developed by Vaibhav Vaish

that extends Zhang’s method to multiple cameras [45]. As in Zhang’s method, the input

to the calibration is multiple images of a planar target withknown two-dimensional coor-

dinates in the plane. Vaish has developed a very robust feature detector that automatically

finds and labels the corners of squares on our target. Typicalresults for the feature detector

are shown superimposed on an image of the target in figure 4.6.The target is designed to

50 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

Figure 4.6: Our robust feature detector automatically detects and labels feature points on
our calibration target.

have uniquely identifiable features even if the entire target is not visible, a common oc-

currence for our large array. Using the target-to-image correspondences, we get an initial

estimate of the camera model parameters by independently calibrating each camera using

Zhang’s method. This estimate is used to initialize a nonlinear optimization (bundle ad-

justment) that solves for all parameters simultaneously. We typically get an RMS pixel

projection error of 0.3 pixels with this method.

4.2. GEOMETRIC CALIBRATION 51

4.2.2 Planar Homographies

Full geometric calibration for an array of one hundred cameras can be quite challenging.

For many uses of the array, being able to reproject images from the image plane to some

other plane in the world is sufficient. Synthetic aperture photography, for example, only

requires a mapping from the focal plane to the camera image planes. Similarly, the two-

plane parametrization used in light field rendering aligns images from all views onto a

common object plane [5]. Some approaches to multi-view stereo also use a space-sweep

framework, once again aligning camera images to planes in the world [46, 47].

The mapping between planes is defined by a projection throughthe camera center.

Corresponding points on the two planes lie on a line passing through the camera center.

This relationship, called a 2D projective transformation or planar homography, can be de-

scribed using homogeneous coordinates as a 3x3 matrix with eight degrees of freedom

[41]. Furthermore, it can be computed independently for each camera directly from image

measurements, with no knowledge of the camera geometry. Figure 4.7 shows a typical use

of a planar homography to align images to a reference view. Inthis example, we determine

the mapping directly by placing our planar calibration target on the plane to which we will

align all images. To create a synthetic aperture image focused on the plane of the target,

we simply add the aligned the images from all cameras.

4.2.3 Plane + Parallax Calibration

For many applications, aligning images to a single plane is insufficient. For example, we

would like to focus at different depths for synthetic aperture photography, or select different

object planes for light field rendering, without computing anew set of homographies. This

can be done using “plane + parallax” calibration. Although the projections could be com-

puted using full geometric calibration, for planar camera arrays and fronto-parallel focal

planes, plane + parallax calibration is simpler and more robust [7].

To calibrate using plane + parallax, we first align images from all of our cameras to a

reference plane that is roughly parallel to the camera plane. We do this as before, using

images of a planar calibration target set approximately fronto-parallel to the camera array.

We designate a central camera to be the reference view and compute an alignment for it that

52 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

(a) (b)

Figure 4.7: Alignment using planar homographies. Using images of a planar calibration
target, we compute a planar homography that aligns each image to a reference plane. (a)
shows an image of the target from a corner camera of the array.(b) show the same image
warped to the reference view. The planar target appears fronto-parallel in all of the aligned
images.

makes the target appear fronto-parallel while perturbing the imaged target feature locations

as little as possible. We then compute planar homographies that align the rest of the views

to the aligned reference view [41]. At this point, all our images are aligned to a reference

view as in figure 4.7.

In the aligned images, there is a simple relation between a point’s distance from the

reference plane and its parallax between two views. Figure 4.8 shows a scene pointP and

its locationsp0 = (s0, t0)T , p1 = (s1, t1)T in the aligned images from two camerasC0 and

C1. Let∆zp be the signed distance from P to the reference plane (negative for this example),

Z0 be the distance from the camera plane to the reference plane,and∆x be the vector from

C0 to C1 in the camera plane. Define therelative depth of P to bed =
∆zp

∆zp+Z0
. Given this

arrangement, the parallax∆p = p1− p0 is simply∆p = ∆x·d.

This has two important consequences:

• The parallax between aligned images of a single point off thereference plane is

enough to determine the relative locations in the camera plane of all of the cameras.

This is the heart of the plane + parallax calibration method.Typically, one measures

the parallax of many points to make the process more robust.

• Once we know the relative camera locations, determining therelative depth of a point

4.3. RESULTS 53

PlaneReference

Pt

∆x

p0 p1∆p

∆zp

Z0

C0C1

Figure 4.8: Planar parallax for planar camera arrays. A point P not on the reference plane
has distinct imagesp0, p1 in camerasC0,C1. The parallax between these two is the product
of the relative camera displacement∆x and the relative depth∆zp.

in one view is enough to determine its location in all other views. We will use this

later for spatiotemporal view interpolation.

Plane + parallax calibration plays a major role in most of theapplications in this the-

sis. We use it in synthetic aperture photography to easily focus at different depths. Once

we have aligned images to a plane at one depth, we can create synthetic aperture images

focused at other depths by translating the images by some multiple of the camera displace-

ments. For high speed videography, we align images from all of our cameras to one focal

plane, and plane + parallax describes the misalignment errors we will see for objects not

on that plane. Finally, the spatiotemporal view interpolation method uses plane + parallax

calibration to estimate scene motion between images from several different cameras.

4.3 Results

The synthetic aperture images and videos I present in this chapter were enabled by our

capture hardware and geometric calibration methods. Because we average images from

all cameras to create each synthetic aperture image, streaming capture from all cameras

was essential for the videos. For any dynamic scene, the cameras had to be synchronized

to trigger simultaneously. Many of these images and videos were produced using full

54 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

Figure 4.9: Synthetic aperture sample input images. Becausethese images are averaged
together, the obvious color variations will have little effect on the output images.

geometric calibration, before we knew that plane + parallaxwould be simpler and more

effective. Regardless, they show that we can effectively combine the data from all of our

cameras.

For synthetic aperture experiments, we use a setup similar to the tightly packed arrange-

ment in figure 3.4. The cameras are mounted on 80/20 bars with an effective aperture that

is one meter wide and slightly less than one meter tall. Usinga setup similar to the one

shown but with only 82 cameras, we took a snapshot of a scene with a partially occlud-

ing plant in the foreground. Three example input images are shown in figure 4.9. Figure

4.10 shows a sequence of synthetic aperture images created from this dataset. The focal

plane starts in the conference room behind the plant and sweeps toward the camera. Note

the different portions of the image in focus at different focal depths, and how the face of

the person hiding behind the plant is revealed even though each input camera could see

only tiny portions of his face. We also have the option of enhancing our results with stan-

dard image processing techniques. In figure 4.11, we have cropped out the face from the

fourth image in the synthetic aperture image sequence and enhanced the contrast. Despite

having a plant between all of our cameras and the person, his face is now clearly visible

and recognizable (assuming you know Professor Levoy!). This is just the beginning of the

possibilities of digitally improving our results. Isaksenet al., for example, mentioned the

possibility of implementing passive depth-from-focus anddepth-from-defocus algorithms

to automatically determine the depth for each pixel.

Of course, we are not limited to synthetic aperture photography. We have also used

4.3. RESULTS 55

Figure 4.10: Sweeping the synthetic aperture focal plane. In this sequence of synthetic
aperture images, the focal plane is swept toward the camera array. Objects visible at one
focal depth disappear at others, allowing us to clearly see the person hiding behind the
plant, even though he was mostly occluded in the input images.

56 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

Figure 4.11: A synthetic aperture image with enhanced contrast.

Figure 4.12: Synthetic aperture video sample input images.

the array to create the world’s first synthetic aperture videos of dynamic scenes. Using the

same setup as before, we streamed synchronized, 4Mb/s MPEG video from all cameras to

disk. The scene is three people walking behind a dense wall ofvines. Three sample images

from different cameras at the same time (with a person behindthe vines) are shown in

figure 4.12. These images actually make the situation seem worse than it really is. Viewing

any one input video, one can tell that people are moving behind the vines, although it is

not possible to tell who they are or what they are doing. I haveincluded an example input

video, sapvideoinput.mpg, on the CD-ROM accompanying this thesis.

The resulting synthetic aperture video is also on the CD-ROM,labeled sapvideo.mpg.

In it, we see the three people moving behind the wall of vines and some of the objects they

are carrying. Example frames are shown in figure 4.13.

4.3. RESULTS 57

Figure 4.13: Frames from a synthetic aperture video.

The results presented so far have been generated off-line, but for surveillance applica-

tions, we would like to view live synthetic aperture video while interactively sweeping the

focal plane. Using plane + parallax calibration, we can sweep the focal plane back and forth

by translating the keystoned images before we add them together. This is the first real-time

application we have implemented with the array, and the firstdemonstration of the value of

using the FPGAs for low-level image processing. Instead of the PCs warping and shifting

all the images, the cameras perform these operations in parallel before compressing and

transmitting the video. The FPGA applies the initial homography using a precomputed

lookup table stored in its SDRAM, then shifts the warped imagebefore sending it to the

MPEG compression chip. The PCs decode the video from each camera, add the frames

together, and send them over a network to a master PC. The master sums the images from

the other PCs and displays the synthetic aperture video.

The video livesap.avi on the companion CD-ROM demonstrates this system in action.

It shows video from one of the cameras, a slider for interactively changes the focal depth,

and the synthesized SAP images. Figure 4.14 has example input images and SAP images

from the video. The input frames show the subject we are trying to track as people move in

front of him. In the synthetic aperture images, we are able toadjust the focal depth to keep

the subject in focus as he moves toward the cameras. The occluding foreground people are

blurred away.

At the time when this was filmed, we had only implemented monochrome image warps

on the FPGAs. We can now warp color images, too. The performance bottleneck in the

system is video decoding and summation on the PC’s. Although the cameras can warp

58 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

(a)

(b)

Figure 4.14: Live synthetic aperture video. (a) Frames fromone of the input cameras,
showing the subject to be tracked as people move in front of him. (b) The corresponding
synthetic aperture images. We interactively adjust the focal plane to keep the subject in
focus as he moves forward.

images at the full 640 x 480 resolution, we configure the MPEG2encoders to send 320 x

240 I-frame only video to the PCs. At that resolution, the PCs can capture, decode and add

15 monochrome streams each at 30fps. Because the I-frame images are DCT-encoded, we

hope to add one more optimization: adding all of frames together in the DCT domain, then

applying one IDCT transform to get the final SAP image.

The enhanced contrast example from before hints at the possibilities of digitally im-

proving synthetic aperture photographs. Synthetic aperture video allows even more possi-

bilities for enhancing our data because we can exploit the dynamic nature of the scene. For

example, suppose we have for each input image a matte identifying pixels that see through

4.3. RESULTS 59

(a) (b)

Figure 4.15: Synthetic aperture with occluder mattes. (a) Aregular synthetic aperture
image, averaged from all aligned input images. (b) Each pixel in this image is the average
of only the corresponding input image pixels that see through the occluder. The contrast is
greatly increased because the occluder is eliminated instead of blurred.

the foreground occluder. If instead of averaging pixels from all images to generate the syn-

thetic aperture image, we average only those that see the background, we can eliminate the

occluder instead of blurring it away. For a static occluder,there are many ways to generate

these mattes. For example, we could place a black surface behind the object, then a white

one, and record which pixels change.

Figure 4.15 shows an experiment using another approach—masking all of the pixels

which never change during the recorded video. These pixels correspond to the static parts

of the video, either the background or the occluder. In practice, we use a threshold so we

do not confuse image noise with unoccluded pixels. The imageon the left is the usual

synthetic aperture image. On the right, each pixel is the average of only the unoccluded

pixels in the input images, and the image contrast is much improved. The missing pixels

are ones in which no camera saw through the foreground, nothing changed during the video

segment, or the changes were below our threshold.

Pixels that contain a mixture of foreground and background colors will corrupt the mat-

ted results, and we can expect that our Bayer demosaicing willwork poorly for background

60 CHAPTER 4. APPLICATION #1: SYNTHETIC APERTURE PHOTOGRAPHY

colors unless the holes in the occluder are several pixels wide. Color calibration also be-

comes an issue here. Regular synthetic aperture photographyis relatively insensitive to

the varying color responses of our sensors. The cameras usedto take the images in fig-

ure 4.9 were configured identically, but show significant variation. Because the data from

all the cameras are averaged together, the differences are averaged away. For the matting

experiment, if few values are averaged for a pixel, color variations will have a greater ef-

fect. In the next section, we will look at an application witheven stricter color calibration

requirements: high-speed video capture using a dense camera array.

Chapter 5

Application #2: High-Speed

Videography

This chapter explains how we use our camera array as a high-speed video camera by stag-

gering the shutter times of the cameras and interleaving their aligned and color-corrected

images. Creating a single high-speed camera from the array requires a combination of fine

control over the cameras and compensation for varying geometric and radiometric prop-

erties characteristic of cheap image sensors. Interleaving images from different cameras

means that uncorrected variations in their radiometric properties will cause frame-to-frame

intensity and color differences in the high-speed video. Because the radiometric responses

of cheap cameras varies greatly, the cameras in our array must be configured to have rel-

atively similar responses, then calibrated so the remaining differences can be corrected in

post-processing.

High-speed videography stresses the temporal accuracy of every imaged pixel, so we

must correct for distortions of fast-moving objects due to the electronic rolling shutter in

our CMOS image sensors. Rolling shutter images can be thought of as diagonal planes in

a spatiotemporal volume, and slicing the volume of rolling shutter images along vertical

planes of constant time eliminates the distortions. At the end of the chaptor, I will explore

ways to extend performance by taking advantage of the uniquefeatures of multiple camera

sensors—parallel compression for very long recordings, and exposure windows that span

multiple high-speed frame times for increasing the frame rate or signal-to-noise ratio. The

61

62 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

interaction of our geometric alignment with the electronicrolling shutter causes timing

errors that can only be partially corrected.

5.1 Previous Work

High-speed imaging has many applications, including analysis of automotive crash tests,

golf swings, and explosions. Industrial, research and military applications have motivated

the design of faster and faster high-speed cameras. Currently, off-the-shelf cameras from

companies like Photron and Vision Research can be found that record 800x600 pixels at

4800fps, or 2.3 gigasamples per second. These devices use a single camera and are typi-

cally limited to storing just a few seconds of data because ofthe huge bandwidths involved

in high-speed video. The short recording duration means that acquisition must be synchro-

nized with the event of interest. As we will show, our system lets us stream high-speed

video for minutes, eliminating the need for triggers and short recording times by using a

parallel architecture for capturing, compressing, and storing high-speed video, i.e. multiple

interleaved cameras.

Little work has been done generating high-speed video from multiple cameras running

at video frame rates. The prior work closest to ours is that ofShechtman, et al. on increasing

the spatiotemporal resolution of video from multiple cameras [48]. They acquire video at

regular frame rates with motion blur and aliasing, then synthesize a high-speed video using

a regularized deconvolution. Our method, with better timing control and more cameras,

eliminates the need for this sophisticated processing, although we will show that we can

leverage this work to extend the range of the system.

5.2 High-Speed Videography From Interleaved Exposures

Using n cameras running at a given frame rates, we create high-speed video with an ef-

fective frame rate ofh = n ∗ s by staggering the start of each camera’s exposure window

by 1/h and interleaving the captured frames in chronological order. For example, using 52

cameras, we haves=30,n=52, andh=1560fps. Unlike a single camera, we have great flex-

ibility in choosing exposure times. We typically set the exposure time of each camera to be

5.2. HIGH-SPEED VIDEOGRAPHY FROM INTERLEAVED EXPOSURES 63

Figure 5.1: An array of 52 cameras for capturing high-speed video. The cameras are packed
closely together to approximate a single center of projection.

1/h, 650µs in this case, or less. The exposure duration for our Omnivision sensors is pro-

grammable in increments of 205µs, corresponding to four row times. Very short exposure

times are often light-limited, creating a trade-off between acquiring more light (to improve

the signal-to-noise ratio) using longer exposures, and reducing motion blur with shorter

exposures. Because we use multiple cameras, we have the option of extending our expo-

sure times past 1/h to gather more light and using temporal super-resolution techniques to

compute high-speed video. We will return to these ideas later.

Figure 5.1 shows the assembly of 52 cameras used for these experiments. To align

images from the different cameras to a single reference view, we make the simplifying as-

sumption that the scene lies within a shallow depth of a single object plane. Under these

conditions, we can register images using planar homographies as described in section 4.2.

We place the calibration target at the assumed object plane and pick one of the central

cameras in the array to be the reference view. Using automatically detected feature corre-

spondences between images, we compute alignment homographies for all other views to

the reference view.

Of course, this shallow scene assumption holds only for scenes that are relatively flat

or sufficiently distant from the array relative to the cameraspacing. Figure 5.2 shows the

alignment error as objects stray from the object plane. In this analysis, (although not in our

calibration procedure), we assume that our cameras are located on a plane, their optical axes

64 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

s

s’

f

Alignment Error

Object Plane

Image Plane

2nd camera

a

Reference camera

Figure 5.2: Using a projective transform to align our imagescauses errors for objects off
the assumed plane. The solid lines from the gray ball to each camera show where it appears
in each view with no errors. The dashed line shows how the alignment incorrectly projects
the image of the ball in the second camera to an assumed objectplane, making the ball
appear to jitter spatially when frames from the two cameras are temporally interleaved.

are perpendicular to that plane, their image plane axes are parallel, and their focal lengths

f are the same. For two cameras separated by a distancea, an object at a distances will see

a disparity ofd = f a/s between the two images (assuming the standard perspective camera

model). Our computed homographies will account for exactlythat shift when registering

the two views. If the object were actually at distances′ instead ofs, then the resulting

disparity should bed′ = f a/s′. The difference between these two disparities is our error

(in metric units, not pixels) at the image plane.

Equating the maximum tolerable errorc to the difference betweend andd′, and solving

for s′ yields the equation

s′ =
s

1− sc
f a

Evaluating this for positive and negative maximum errors gives our near and far effec-

tive focal limits. This is the same equation used to calculate the focal depth limits for a

pinhole camera with a finite aperture [49]. In this instance,our aperture is the area spanned

5.2. HIGH-SPEED VIDEOGRAPHY FROM INTERLEAVED EXPOSURES 65

Focal Length Focal Distance Depth of Field Hyperfocal Distance

10m 0.82m
6.0mm 20m 3.3m 242m

30m 7.5m
100m 99m
10m 0.24m

20.0mm 20m 0.99m 809m
30m 2.2m

100m 25m

Table 5.1: The effective depth of field for the 52-camera array for different lens focal
lengths and object focal distances.

by our camera locations. Rather than becoming blurry, objects off the focal plane remain

sharp but appear to move around from frame to frame in the aligned images.

For our lab setup, the object plane is 3m from our cameras, thecamera pitch is 33mm,

and the maximum separation between any two of the 52 cameras is 251mm. The image

sensors have a 6mm focal length and a pixel size of 6.2µm. Choosing a maximum toler-

able error of +/- one pixel, we get near and far focal depth limits of 2.963m and 3.036m,

respectively, for a total depth of field of 7.3cm.

Note that these numbers are a consequence of filming in a confined laboratory. For

many high-speed video applications, the objects of interest are sufficiently far away to

allow much higher effective depths of field. To give an idea ofhow our system would

work in such settings, table 5.1 shows how the depth of field grows with object focal depth.

It presents two arrangements, the lab setup with 6mm lenses already described, and the

same rig with moderately telephoto 20mm lenses. The depth offield grows quickly with

distance. For the system with 6mm lenses and an object focal distance of 10m, the depth

of field is already nearly a meter. The table also includes theeffective hyperfocal distance,

h, for the systems. When the object focal depth is set ath, the effective depth of field of the

system becomes infinite. The motion in the aligned images of all objects farther thanh/2

from the camera array will be less than our maximum tolerableerror.

The false motion of off-plane objects can be rendered much less visually objectionable

by ensuring that sequential cameras in time are spatially adjacent in the camera mount. This

66 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

1

2

3

4 5

86

7 9 10

111213

14 15 16 17

181920

2122

2324

25

26

27

28

29

3031

32

33

34

3536

37 38 39

40414243

44 45 46

47 48

49 50

51

52

Figure 5.3: The trigger order for our 52 camera array. Ensuring that sequential cameras in
the trigger sequence are spatially adjacent in the array makes frame-to-frame false motion
of off-plane objects small, continuous and less objectionable.

constrains the maximum distance between cameras from one view in the final high-speed

sequence to the next to only 47mm and ensures that the apparent motion of misaligned

objects is smooth and continuous. If we allow the alignment error to vary by a maximum

of one pixel from one view to the next, our effective depth of field increases to 40cm in our

lab setting. Figure 5.3 shows the firing order we use for our 52camera setup.

5.3 Radiometric Calibration

Because we interleave images from different cameras, uncorrected variations in their ra-

diometric properties will cause frame-to-frame intensityand color differences in the high-

speed video. Because the radiometric responses of cheap cameras varies greatly, the cam-

eras in our array must be configured to have relatively similar responses, then calibrated so

the remaining differences can be corrected in post-processing.

Color calibration is essential to many view interpolation and high-x algorithms. Light

Field Rendering and The Lumigraph, for example, assume that all of the camera images

“look alike”—the color and intensity variations between images are due only to the chang-

ing camera positions. Furthermore, most computational imaging techniques assume that

the camera responses are linear. Even expensive cameras often have nonlinear responses,

5.3. RADIOMETRIC CALIBRATION 67

so we must also find a way to linearize the sensor response. Fora large camera array, these

calibration methods must be automatic.

Differences in the response of a camera’s pixels to incidentillumination from the scene

can be due to variations in the sensor’s response or to the camera’s optics. Here, I summa-

rize these sources of variation, review past efforts to automatically radiometrically calibrate

camera arrays, and present methods for automatically configuring and color matching the

array.

5.3.1 Camera Radiometric Variations

For a given incident illumination, a camera’s image sensor and optics determine its radio-

metric response. Process variations between sensors (or even between pixels on the same

sensor) lead to different responses at each step of the imaging process. The color filters for

single-chip color sensors, the photodetectors that collect stray electrons generated by light

interacting with silicon, and the circuitry for amplifyingand reading out the values sensed

at each pixel all contribute to the variations between sensors. The CMOS sensors in our

array use “analog processing” for color space conversion and gamma adjustment, adding

more sources of variation unless these features are turned off.

The optics on our cameras also cause variations in color response. Cos4 falloff and

vignetting, for example, cause images to get dimmer towardsthe edges. Less strict man-

ufacturing tolerances for inexpensive lenses also lead to differences in the amount of light

they gather. Global differences in the amount of light a lenspasses to the sensor are in-

distinguishable from a global change in the gain of the sensor, so we do not attempt to

calibrate our sensor and lenses separately. Furthermore, although intensity falloff is cer-

tainly significant for our cameras, we have not yet attemptedto calibrate it for our array.

Our experience so far has been that it is roughly similar fromcamera to camera and does

not strongly impact our algorithms.

5.3.2 Prior Work in Color Calibrating Large Camera Arrays

Very little work has been done on automatically radiometrically calibrating large camera

arrays, most likely because big arrays are still rare. Some systems, such as the 3D-Room,

68 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

do not color calibrate their cameras at all, leading to colorartifacts [50]. Presumably the

automatic gain, offset and white balance controls for theircameras produced acceptable

images, even if they varied somewhat between cameras. Yang et al. found that the au-

tomatic controls were unreliable for their 64-camera array[15], so they used the method

proposed by Nanda and Cutler for an omnidirectional multi-sensor “RingCam” [51].

The RingCam itself was a set of cameras with only partially overlapping views, so the

color calibration relies on image statistics in the region of overlap between neighboring

cameras. Because this method is the only other one we know of for configuring an array

of cameras, I will briefly describe it here before presentingour methods. In the notation of

Nanda and Cutler, for a camera with brightnessb and contrastc, the relation between an

observed pixel valueI(x,y) and the accumulated chargei(x,y) on the sensor at that pixel is

I(x,y) = b+ c∗ i(x,y)

Their image sensors, like ours, have programmable gains (contrasts) and offsets (bi-

ases). To configure their cameras, they first set the contrastfor their sensors to zero and

adjust the offset until the mean image value is some designated “black value.” Once the

offset has been fixed, they vary the contrast to raise the meanimage value to some user-

selected level. Finally, they white balance their cameras by filming a white piece of paper

and adjusting the red and blue gains of their sensors until the images of the paper have

equal red, green and blue components. Their goal was real-time image corrections, so they

did not implement any post-processing of the images from their cameras.

Our color calibration goals are different from those of Nanda et al. The RingCam had

to deal with highly varying illumination because their cameras had only partially overlap-

ping fields of view and were arranged to cumulatively span a full 360 degrees. For the

applications in this thesis, our cameras are usually on a plane and verged to view a com-

mon working volume, so the ranges of intensities in the viewsare more consistent. The

RingCam was designed to handle dynamically varying illumination and used blending to

mitigate residual color differences between cameras. Our goal is to produce images that

require no blending. We fix our camera settings at the start ofeach acquisition so we can

calibrate for a particular setting and post-process the images to correct for variations.

5.3. RADIOMETRIC CALIBRATION 69

5.3.3 Radiometric Calibration Method

Our calibration method ensures that all cameras view the same range of scene intensities

and maximizes the usable data produced in each color channelby all cameras so we can

process it later. It is described in detail in Neel Joshi’s Master’s thesis [8]. We start by con-

figuring all of our cameras to match the same desired linear fitfor the gray scale checkers

on a Macbeth color checker chart. Our image sensors are highly nonlinear near the top and

bottom of their output range, so we fit the response to a line from 20 (out of 255) for the

black patch (3.1% reflectance) to 220 for the white patch (90.0% reflectance). We itera-

tively adjust the programmable green, red and blue gains andoffsets on our sensors until

the measured responses match the line. Assuming the white patch is the brightest object in

our scene, this ensures that we’re using the entire range of each color channel and reduces

quantization noise in our images. This linear fit has the added benefit of white balancing

our cameras.

To ensure that intensity falloff and uneven illumination donot cause errors, we take an

image with a photographic gray card in place of the checker chart. With no intensity falloff

and uniform illumination, the image of this diffuse gray card would be constant at all pixels.

For each camera, we compute scale values for each pixel that correct the nonuniformity and

apply them to all image measurements.

Once we have automatically configured the cameras, we apply standard methods to

further improve the color uniformity of images. The image sensor response is only roughly

linear, so we compute lookup tables to map the slightly nonlinear responses of our cameras

to the desired line for the gray scale patches. Then we compute 3x3 correction matrices

that we apply to the(R,G,B) pixel values from each camera to generate corrected(R,G,B)

values. The matrices minimize the variance between measured values for all of the color

checkers in the chart across all of the cameras in the array.

There are a number of ways one could automate this task. We chose to leverage our

geometric calibration by attaching the color checker to outgeometric calibration target at

a fixed location and using homographies to automatically findthe locations of the color

checker patches. With this method, we can robustly and simply radiometrically configure

and calibrate an array of 100 cameras in a matter of minutes.

70 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

Figure 5.4: A color checker mosaic with no color correction.This image was assembled us-
ing 7x7 blocks from different cameras and clearly shows the radiometric variation between
them, even though they are configured with identical exposure and color gain settings.

Figure 5.4 shows an image mosaic of a Macbeth color checker chart made with no color

calibration. To make this image, we configured all of our cameras with the same gains, took

pictures of the target and then applied the planar homography described earlier to warp all

the images to one common reference view. We assembled the mosaic from 7x7 pixel blocks

from different camera images. Each diagonal line of blocks (diagonal from lower left to

upper right) is from the same camera. The color differences are easy to see in this image

and give an idea of the process variation between image sensors.

In the figure 5.5 below, we have used our color calibration routines to properly set up

the cameras and post-process the images. Note that the colordifferences are very hard

to detect visually. This implies that we should be able to do other types of mosaics and

IBR methods for combining images effectively, too. In quantitative terms, the RMS error

between color values for any two cameras was 1.7 for red values, 1.0 for green, and 1.4 for

blue. The maximum error was larger, 11 for red, 6 for green and8 for blue. Although the

perceptible differences in the resulting images are small,the large maximum errors might

cause difficulties for vision algorithms that rely on accurate color information. As we will

see in the next chapter, we have successfully use optical flowbased vision algorithms on

5.4. OVERCOMING THE ELECTRONIC ROLLING SHUTTER 71

Figure 5.5: A color checker mosaic with color correction. After calibrating our cameras,
the color differences are barely discernible.

images from the array to perform view interpolation in spaceand time.

Our radiometric calibration method has several limitations that might need to be ad-

dressed for future applications. The cameras must all see the same calibration target, pre-

cluding omnidirectional camera setups like the RingCam. We donot handle dynamically

varying illumination, which could be a problem for less controlled settings. Although we

take steps to counter intensity falloff in the cameras and nonuniform illumination of our

color checker when performing the color calibration, we do not model intensity falloff or

try to remove it from our images. Because falloff is similar from camera to camera, and

our cameras all share the same viewing volume, the effects are hard to perceive for our

applications. For image mosaicing to produce wide field-of-view mosaics, however, this

falloff might be very noticeable.

5.4 Overcoming the Electronic Rolling Shutter

For image sensors that have a global, “snapshot” shutter, such as an interline transfer CCD,

the high-speed method we have described would be complete. Asnapshot shutter starts and

72 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

(a) (b)

Figure 5.6: The electronic rolling shutter. Many low-end image sensors use an electronic
rolling shutter, analogous to an open slit that scans over the image. Each row integrates
light only while the slit passes over it. (a) An example of an object moving rapidly to the
right while the rolling shutter scans down the image plane. (b) In the resulting image, the
shape of the moving object is distorted.

stops light integration for every pixel in the sensor at the same times. Readout is sequential

by scan line, requiring a sample and hold circuit at each pixel to preserve the value from the

time integration ends until it can be read out. The electronic rolling shutter in our image

sensors, on the other hand, exposes each row just before it isread out. Rolling shutters

are attractive because they do not require the extra sample and hold circuitry at each pixel,

making the circuit design simpler and increasing the fill factor (the portion of each pixel’s

area dedicated to collecting light). A quick survey of Omnivision, Micron, Agilent, Hynix

and Kodak reveals that all of their color, VGA (640x480) resolution, 30fps CMOS sensors

use electronic rolling shutters.

The disadvantage of the rolling shutter, illustrated in figure 5.6, is that it distorts the

shape of fast moving objects, much like the focal plane shutter in a 35mm SLR camera.

Since scan lines are read out sequentially over the 33ms frame time, pixels lower in the

image start and stop integrating incoming light nearly a frame later than pixels from the top

of the image.

Figure 5.7 shows how we remove the rolling shutter distortion. The camera triggers

are evenly staggered, so at any time they are imaging different regions of the object plane.

Instead of interleaving the aligned images, we take scan lines that were captured at the

same time by different cameras and stack them into one image.

One way to view this stacking is in terms of a spatiotemporal volume, shown in figure

5.4. OVERCOMING THE ELECTRONIC ROLLING SHUTTER 73

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

	 	
	 	
	 	
	 	
	 	
	 	

� �
� �
� �
� �
� �
� �

Figure 5.7: Correcting the electronic rolling shutter distortion. The images on the left
represent views from five cameras with staggered shutters. At any time, different rows
(shown in gray) in each camera are imaging the object plane. Bystacking these rows into
one image, we create a view with no distortion.

y

t
x

(a)

y

t
x

(b)

Figure 5.8: Slicing the spatiotemporal volume to correct rolling shutter distortion. (a)
Cameras with global shutters capture their entire image at the same time, so each one is
a vertical slice in the volume. (b) Cameras with rolling shutters capture lower rows in
their images later in time, so each frame lies on a slanted plane in the volume. Slicing
rolling shutter video along planes of constant time in the spatiotemporal volume removes
the distortion.

5.8. Images from cameras with global shutters are vertical slices (along planes of constant

time) of the spatiotemporal volume. Images from rolling shutter cameras, on the other

hand, are diagonal slices in the spatiotemporal volume. Thescan line stacking we just de-

scribed is equivalent to slicing the volume of rolling shutter images along planes of constant

time. We use trilinear interpolation between frames to create the images. The slicing re-

sults in smooth, undistorted images. Figure 5.9 shows a comparison of frames from sliced

and unsliced videos of a rotating fan. The videos were filmed with the 52 camera setup,

using the trigger ordering in figure 5.3.

The spatiotemporal analysis so far neglects the interaction between the rolling shutter

and our image alignments. Vertical components in the alignment transformations raise or

74 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

(a) (b)

Figure 5.9: “Slicing” rolling shutter videos to eliminate distortions. (a) An aligned image
from one view in the fan sequence. Note the distorted, non-uniform appearance of the
fan blades. (b) “Slicing” the stacked, aligned frames so that rows in the final images are
acquired at the same time eliminates rolling shutter artifacts. The moving blades are no
longer distorted.

lower images in the spatiotemporal volume. As figure 5.10 shows, such displacements

also shift rolling shutter images later or earlier in time. Byaltering the trigger timing

of each camera to cancel this displacement, we can restore the desired evenly staggered

timing of the images. Another way to think of this is that a vertical alignment shift of

x rows implies that features in the object plane are imaged notonly x rows lower in the

camera’s view, but alsox row timeslater because of the rolling shutter. A row time is the

time it takes the shutter to scan down one row of pixels. Triggering the camerax row times

earlier exactly cancels this delay and restores the intended timing. Note that pure horizontal

translations of rolling shutter images in the spatiotemporal volume do not alter their timing,

but projections that cause scale changes, rotations or keystoning alter the timing in ways

that cannot be corrected with only a temporal shift.

We aim our cameras straight forward so their sensors planes are as parallel as possible,

making their alignment transformations as close as possible to pure translations. We com-

pute the homographies mapping each camera to the reference view, determine the vertical

components of the alignments at the center of the image, and subtract the corresponding

time displacements from the cameras’ trigger times. As we have noted, variations in the

focal lengths and orientations of the cameras prevent the homographies from being strictly

translations, causing residual timing errors. In practice, for the regions of interest in our

5.5. RESULTS 75

y

t
x

(a)

y

t
x

(b)

Figure 5.10: Alignment of rolling shutter images in the spatiotemporal volume. (a) Verti-
cally translating rolling shutter images displaces them toward planes occupied by earlier or
later frames. This is effectively a temporal offset in the image. (b) Translating the image
in time by altering the camera shutter timing corrects the offset. As a result, the image is
translated along its original spatiotemporal plane.

videos (usually the center third of the images) the maximum error is typically under two

row times. At 1560fps, the frames are twelve row times apart.

The timing offset error by the rolling shutter is much easierto see in a video than in a se-

quence of still frames. The video faneven.mpg on the CD-ROM accompanying this thesis

shows a fan filmed at 1560fps using our 52 camera setup and evenly staggered trigger times.

The fan appears to speed up and slow down, although its real velocity is constant. Note

that the effect of the timing offsets is lessened by our sampling order—neighboring cameras

have similar alignment transformations, so we do not see radical changes in the temporal

offset of each image. Fanshifted.mpg is the result of shifting the trigger timings tocompen-

sate for the alignment translations. The fan’s motion is nowsmooth, but the usual artifacts

of the rolling shutter are still evident in the misshapen fanblades. Fanshiftedsliced.mpg

shows how slicing the video from the retimed cameras removesthe remaining distortions.

5.5 Results

Filming a rotating fan is easy because no trigger is needed and the fan itself is nearly planar.

Now I present a more interesting acquisition: 1560 fps videoof balloons popping, several

seconds apart. Because our array can stream at high speed, we did not need to explicitly

76 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

Figure 5.11: 1560fps video of a popping balloon with rollingshutter distortions. The
balloon is struck at the top by the tack, but it appears to pop from the bottom. The top of
the balloon seems to disappear.

synchronize video capture with the popping of the balloons.In fact, when we filmed we

let the video capture run while we walked into the center of the room, popped two balloons

one at a time, and then walked back to turn off the recording. This video is also more

colorful than the fan sequence, thereby exercising our color calibration.

Figure 5.11 shows frames of one of the balloons popping. We have aligned the images

but not yet sliced them to correct rolling shutter-induced distortion. This sequence makes

the rolling shutter distortion evident. Although we strikethe top of the balloon with a

tack, it appears to pop from the bottom. These images are fromthe accompanying video

balloon1distorted.mpg. In the video, one can also see the artificial motion of our shoulders,

which are in front of the object focal plane. Because of our camera ordering and tight

packing, this motion, although incorrect, is relatively unobjectionable. Objects on the wall

in the background, however, are much further from the focal plane and exhibit more motion.

Figure 5.12 compares unsliced and sliced images of the second balloon in the sequence

popping. These sliced frames are from balloon2sliced.mpg. In the unsliced sequence, the

balloon appears to pop from several places at once, and pieces of it simply vanish. After

resampling the image data, the balloon correctly appears topop from where it is punctured

by the pin. This slicing fixes the rolling shutter distortions but reveals limitations of our

approach: alignment errors and color variations are much more objectionable in the sliced

video. Before slicing, the alignment error for objects off the focal plane was constant for a

5.5. RESULTS 77

given depth and varied somewhat smoothly from frame to frame. After slicing, off-plane

objects, especially the background, appear distorted because their alignment error varies

with their vertical position in the image. This distortion pattern scrolls down the image

as the video plays and becomes more obvious. Before slicing, the color variation of each

camera was also confined to a single image in the final high-speed sequence. These short-

lived variations were then averaged by our eyes over severalframes. Once we slice the

images, the color offsets of the images also create a slidingpattern in the video. Note

that some color variations, especially for specular objects, are unavoidable for a multi-

camera system.The reader is once again encouraged to view the videos on the companion

CD to appreciate these effects. The unsliced video of the second balloon popping, bal-

loon2 distorted.mpg, is included for comparison, as well as a continuous video showing

both balloons, balloons.mpg.

The method presented acquires very high-speed video using adensely packed array of

lower frame rate cameras with precisely timed exposure windows. The parallel capture and

compression architecture of the array lets us stream essentially indefinitely. The system

scales to higher frames rates by simply adding more cameras.Inaccuracies correcting the

the temporal offset caused by aligning our rolling shutter images are roughly one sixth

of our frame time and limit the scalability of our array. A more fundamental limit to

the scalability of the system is the minimum integration time of the camera. At 1560fps

capture, the exposure time for our cameras is three times theminimum value. If we scale

beyond three times the current frame rate, the exposure windows of the cameras will begin

to overlap, and our temporal resolution will no longer matchour frame rate.

The possibility of overlapping exposure intervals is a unique feature of our system—no

single camera can expose for longer than the time between frames. If we can use temporal

super-resolution techniques to recover high-speed imagesfrom cameras with overlapping

exposures, we could scale the frame rate even higher than theinverse of the minimum expo-

sure time. As exposure times decrease at very high frame rates, image sensors become light

limited. Typically, high-speed cameras solve this by increasing the size of their pixels and

using very bright lights. Applying temporal super-resolution overlapped high-speed expo-

sures is another possible way to increase the signal-to-noise ratio of a high-speed multi-

camera system. To see if these ideas show promise, I applied the temporal super-resolution

78 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

Figure 5.12: Comparison of the sliced and unsliced 1560fps balloon pop. The top set
of ten pictures are interleaved rolling shutter images. Theballoon appears to pop from
several places at once, and pieces of it disappear. Properlyresampling the volume of images
produces the lower set of ten images, revealing the true shape of the popping balloon.

method presented by Shechtman [48] to video of a fan filmed with an exposure window

that spanned four high-speed frame times. The temporal alignment process was omitted

because the convolution that relates high-speed frames to our blurred images is known.

Figure 5.13 shows a comparison between the blurred blade, the results of the temporal

super-resolution, and the blade captured in the same lighting with a one frame exposure

window. Encouragingly, the deblurred image becomes sharper and less noisy.

There are several opportunities for improving this work. One is a more sophisticated

alignment method that did not suffer from artificial motion jitter for objects off our assumed

focal plane. Another is combining the high-speed method with other multiple camera ap-

plications. In the next chapter, I will discuss an application that does both–spatiotemporal

5.5. RESULTS 79

v

(a) (b) (c)

Figure 5.13: Overlapped exposures with temporal super-resolution. (a) Fan blades filmed
with an exposure window four high-speed frames long. (b) Temporal super-resolution
yields a sharper, less noisy image. Note that sharp featureslike the specular highlights and
stationary edges are preserved. (c) A contrast enhanced image of the fan filmed under the
same lighting with an exposure window one fourth as long. Note the highly noisy image.

view interpolation.

80 CHAPTER 5. APPLICATION #2: HIGH-SPEED VIDEOGRAPHY

Chapter 6

Application #3: Spatiotemporal View

Interpolation

The synthetic aperture and high-speed videography applications presented in the last two

chapters use an array of cameras, accurate calibration, andprecise camera control to en-

hance performance along a single metric. Nothing prevents us from using this set of tools

to simultaneously improve multiple aspects of camera performance. For example, we could

create a high-speed, synthetic aperture video camera usingstaggered sets of synchronized

cameras spread across the synthetic aperture. Another possibility would be a high dynamic

range, high-resolution video camera constructed from camera clusters, where the cameras

in each cluster have the same field of view but varying exposure times, and their fields of

view abut.

This chapter explores using a dense array of cameras with staggered trigger times to

increase our sampling resolution in both space and time for spatiotemporal view interpola-

tion. We look at the more general problem of optimal samplingpatterns and interpolation

methods for the spatiotemporal volume of images that the camera array records. Large

video camera arrays are typically synchronized, but we showthat staggering camera trig-

gers provides a much richer set of samples on which to base theinterpolation. Richer sam-

pling not only improves the simplest interpolation methods, blending and nearest neighbor,

but also lets one interpolate new space-time views using simple, robust, image-based meth-

ods with simple calibration. We present a novel optical flow method that combines a plane

81

82 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

plus parallax framework with knowledge of camera spatial and temporal offsets to generate

flow fields for virtual images at new space-time locations. Wepresent results interpolating

video from a 96-camera light field.

6.1 Introduction

Spatiotemporal view interpolation is the creation of new scene views from locations and

times different from those in the captured set of images. Thesimplest spatiotemporal inter-

polation method is extending light field rendering to video by linearly interpolating in time.

For this reconstruction to work, the image volume must be band-limited. Such prefiltering

adds undesirable blur to the reconstructed images. Even with very large camera arrays, the

sampling density is not sufficiently high to make the blur imperceptible. If the images are

not band-limited, the output exhibits ghosting artifacts.This occurs for large disparities or

temporal motions.

To avoid the conflicting requirements for sharp images with no sampling artifacts, most

image based rendering systems use more sophisticated interpolation schemes based on an

underlying scene model. The simplest method is to estimate motion in an image based

on local information from neighboring views. Other methodsgenerate increasingly so-

phisticated three-dimensional models of the scene. Motionestimation grows less robust

as the “distance” between camera images increases. More complicated models can handle

more widely separated images, but their runtime increases as more global information is

incorporated.

The temporal sampling strategy for an array of cameras–wheneach camera triggers–

affects reconstruction. Traditionally, designers of camera arrays have striven to synchro-

nize their cameras. This often leads to much more temporal motion between camera frames

than parallax motion between neighboring cameras. Instead, staggered triggers are a better

sampling strategy. Improved temporal sampling decreases temporal image motion, allow-

ing us to use simpler, more robust interpolation methods such as optical flow. I will present

a spatiotemporal view interpolation method that uses plane+ parallax calibration to fac-

tor optical flow into parallax and temporal motion components between multiple camera

views.

6.2. PREVIOUS WORK 83

The next section describes previous work in capturing and interpolating between space-

time image samples. I’ll review plane + parallax geometry and our rendering methods, then

describe a framework for determining how best to distributeour camera array samples in

time. Even for basic linear or nearest neighbor, better sampling greatly improves recon-

struction. Finally, I will describe a method for determining spatial and temporal motion

between several views in space and time using optical flow.

6.2 Previous Work

We have already discussed prior work in camera array design and spatial view interpolation.

The Manex Entertainment “Bullet Time” system simulated a physically impossible space-

time camera trajectory through a dynamic scene, but the pathmust be specified in advance.

The cameras capture the views needed for a single camera path. The goal of the work in this

chapter is to investigate how well one could do “Bullet Time” effects as a post-processing

step for a captured set of images without specifying the viewtrajectory in advance.

Spatiotemporal view interpolation depends on sampling strategies and interpolation

methods. Lin and Shum [52] present a maximum camera spacing for static light fields

with a constant depth assumption, and Chai et al. [53] analyzethe minimum spatial sam-

pling rate for static light fields including geometry information. Neither of these works

address temporal sampling rates for video light fields. Vedula et al. [54] and Carceroni

and Kutulakos [55] present methods for interpolating new space-time views using arrays of

synchronized cameras with coincident triggers. They explicitly solve for scene reflectance,

structure and motion. By contrast, my system exploits large numbers of inexpensive sensors

and improved temporal sampling to reduce spatiotemporal view interpolation to a simpler,

image-based task.

6.3 Calibration and Rendering

For this work, the cameras are assembled either in a line or a plane so we can take advantage

of plane + parallax calibration. Because this calibration iscentral to this work, I will briefly

review it. Starting with a planar array of cameras, we align all of the camera images to

84 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

a fronto-parallel reference plane using 2D image homographies. In the aligned images,

points in the scene lying on the reference plane show no parallax between views. Points off

the reference plane will have a parallax of∆p = ∆x·d, where∆x is the vector fromC0 toC1

in the camera plane, andd is the relative depth of the point. This has two implications:

• Once we have aligned images to a common reference plane, the parallax between

aligned images of a single point off the reference plane is enough to determine the

relative locations in the camera plane of all of the cameras.As shown by Vaish et al.

[7], the camera displacements can be computed robustly frommultiple measurements

using a rank-1 factorization via SVD.

• Given the relative camera displacements in the camera plane, the relative depth of a

point in one view suffices to predict its location in all otherviews. This provides a

powerful way to combine data from many images.

Once again, we will align all of our input images to a reference plane. The aligned

images provide a common space in which to analyze and combineviews. Levoy and Han-

rahan represent light fields with a two-plane(u,v,s, t) parametrization. For a planar array of

cameras, the aligned images correspond(s, t) parameterized images for light field render-

ing, so measuring motion in the reference plane indicates how much aliasing we would see

in reconstructed light field images. We will use this framework both to analyze temporal

sampling requirements and for determining image flow between neighboring space-time

views.

Aligning our images to a reference plane automatically corrects for geometric variations

in our cameras (excluding translations out of the camera plane and radial distortion, which

we have found to be negligible for our application). The aligned images are generally off-

axis projections, which are visually disturbing. This is clear from the aligned views of

the calibration target in figure 4.7–the reference plane will always appear fronto-parallel,

regardless of the camera position.

The transformation that we need for rendering corrects the off-axis projection and is

equivalent to taking a picture of the aligned plane from the virtual camera position. Plane

+ parallax calibration does not provide enough informationto do this. If we fix the relative

6.4. SPATIOTEMPORAL SAMPLING 85

(a) (b) (c)

Figure 6.1: For synchronized cameras, the motion due to parallax between neighboring
cameras is often much less than the temporal motion between frames for the same camera.
(a) and (b) are images from adjacent cameras at the same pointin time. Disparities between
images are small. (c) shows a picture from the same camera as (b), one frame later. The
motion is obvious and much larger.

camera locations produced by our calibration, the missing information corresponds to the

field of view of our reference camera and the distance from thecamera plane to the refer-

ence plane. These quantities can be determined either by calibrating the reference camera

relative to the reference plane or simple manual measurement. In practice, we have found

that small errors in these quantities produce very subtle perspective errors and are visually

negligible.

6.4 Spatiotemporal Sampling

We now turn our attention to the temporal distribution of oursamples. We assume that our

cameras all run at a single standard video rate (30fps for ourarray), that they are placed on

a planar grid, and that the desired camera spacing has already been determined. Figure 6.1

shows aligned synchronized images from our array of 30fps video cameras. Differences

between images are due to two components: parallax between views and temporal motion

between frames. From the images, it is clear that the temporal image motion is much

greater than the parallax for neighboring views in space andtime. This suggests that we

should sample more finely temporally to minimize the maximumimage motion between

neighboring views in space and time. In the next section, we show how temporal and spatial

86 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

PlaneReference

v∆t
Pt Pt+∆t

∆x

p0 p1∆p

Z0

∆znear

C1 C0

Figure 6.2: The temporal and spatial view axes are related byimage motion. For a given
scene configuration, we can determine a time step∆t for which the maximum image motion
between temporal samples is equal to the maximum parallax between spatially neighboring
views. If we measure time in increments of∆t and space in increments of the camera
spacing, then the Manhattan distance between(x,y, t) view coordinates corresponds to the
maximum possible image motion between views.

view sampling are related by image motion.

6.4.1 Normalizing the Spatial and Temporal Sampling Axes

For a given location of the reference plane at a distanceZ0 from the camera plane, if we

bound the maximum parallax in our aligned images, we can establish near and far depth

limits for our scene,znear andz f ar. Alternatively, we could determine the minimum and

maximum depth limits of our scene and place the reference plane accordingly [53]. The

near and far bounds and camera spacing∆x determine the maximum parallax for any point

between neighboring cameras. Given this near depth limitznear and a maximum velocity of

v for any object in the scene, we can determine the time for which the maximum possible

temporal image motion equals the maximum parallax between neighboring views. This is

shown in figure 6.2. The temporal motion forP in cameraC0 is greatest if it is at the near

depth limit and moves such that the vectorPtPt+1 is orthogonal to the projection ray from

C0 at timet + 1. If we assume a narrow field of view for our lenses, we can approximate

this with a vector perpendicular to the reference plane, shown asv∆t. If P has velocityv,

the maximum temporal motion of its image inC0 is v∆tZ0
Z0−∆Znear

. Equating this motion to the

6.4. SPATIOTEMPORAL SAMPLING 87

maximum parallax forP in a neighboring camera yields

∆t =
∆XZnear

v∆Z0
(6.1)

This is the time step for which maximum image motion equals maximum parallax between

neighboring views.

Measuring time in increments of the time step∆t and space in units of camera spacings

provides a normalized set of axes to relate space-time views. A view is represented by

coordinates(x,y, t) in this system. For nearest-neighbor or weighted interpolation between

views, measuring the Manhattan distance between view positions in these coordinates will

minimize jitter or ghosting during reconstruction. We use Manhattan instead of euclidean

distance because the temporal and parallax motions could beparallel and in the same direc-

tion. Choosing a temporal sampling period equal to∆t will ensure that maximum temporal

motion between frames will not exceed the maximum parallax between neighboring views.

Determining maximum scene velocities ahead of time (for example, from the biome-

chanics of human motion, or physical constraints such as acceleration due to gravity) can

be difficult. An alternative to computing the motion is filming a representative scene with

synchronized cameras and setting the time step equal to the ratio between the maximum

temporal and parallax motions for neighboring views. One could even design a camera

array that adaptively determined the time step based on tracked feature points between

views.

6.4.2 Spatiotemporal Sampling Using Staggered Triggers

The time step∆t tells us the maximum temporal sampling period that will ensure tempo-

ral resolution at least as good as the spatial resolution across views. One could increase

the temporal sampling rate by using an array of high-speed cameras, but this could be

prohibitively expensive and would increase demands on databandwidth, processing, and

storage. By staggering the cameras’ trigger times, we can increase the temporal sampling

rate without adding new samples.

Our goal is to ensure even sampling in space and time using ournormalized axes. A

convenient way to do this is with a tiled pattern, using the minimum number of evenly

88 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

0

1

2

3

4

5

6

7

8

Figure 6.3: An example trigger pattern for a 3x3 array of cameras with nine evenly stag-
gered triggers. The numbers represent the order in which cameras fire. The order was
selected to have even sampling in the(x,y, t) space across the pattern. We tessellate larger
arrays with patterns such as this one to ensure even spatiotemporal sampling.

staggered trigger times that gives an offset less than∆t. To approximate uniform sampling,

the offsets are distributed evenly within the tile, and the pattern is then replicated across

the camera array. Figure 6.3 shows an example trigger pattern for a 3x3 array of cameras.

For larger arrays, this pattern is replicated vertically and horizontally. The pattern can be

truncated at the edges of arrays with dimensions that are notmultiples of three.

We used the tiled sampling pattern for our experiments because they were convenient

and we had an approximation of the maximum scene velocity. For general scene sampling,

especially with unknown depth and velocity limits, these patterns are not optimal. When

filming scenes with high temporal image velocities, no two cameras should trigger at the

same time. Instead, the trigger times should be evenly distributed across the 30Hz frame

time, as in the high-speed video method, to provide the best temporal sampling resolution.

For scenes with low velocities, parallax image motion dominates over temporal motion, so

we must still ensure even temporal sampling within any localwindow. Thus, in the general

case, the sampling must be temporally uniform over any size spatial region of cameras.

One way to accomplish this might be to replicate and gradually skew a local trigger pattern

across the entire array.

6.5 Interpolating New Views

We can now create our distance measure for interpolation. The plane + parallax calibration

gives up camera positions in the camera plane up to some scalefactor. We normalize these

positions by dividing by the average space between adjacentcameras, so the distance from

6.5. INTERPOLATING NEW VIEWS 89

a camera to its horizontal and vertical neighbors is approximately one. Let(x,y) be the

position of each camera in these normalized coordinates, and let t be the time at which a

given image is acquired, measured in time steps of∆t. Because we have chosen a time step

that sets the maximum parallax between views equal to the maximum temporal motion

between time steps, the euclidean distance between the(x,y, t) coordinates representing

two views is a valid measure of the maximum possible motion between the two images.

The simplest way we could interpolate new views would be to use nearest neighbors

as in the high-speed videography method of chapter 5. This method produces accept-

able results, but as points move off the reference plane, their images jitter due to parallax

between views. The perceived jitter can be reduced using interpolation between several

nearby views. To determine which images to blend and how to weight them, we compute

a Delauney tessellation of our captured image coordinates.For a new view(x,y, t), we

find the tetrahedron of images in the tessellation containing the view and blend the images

at its vertices using their barycentric coordinates as weights. Using this tessellation and

barycentric weighting ensures that our blending varies smoothly as we move the virtual

viewpoint. As we leave one tetrahedron, the weights of dropped vertices go to zero. Our

temporal sampling pattern is periodic in time, so we only need to compute the tessellation

for three 30Hz sampling periods to compute the weights for anarbitrarily long sequence.

Figure 6.4 shows the benefits of improved temporal sampling.In this experiment, we

used a 12x8 array of 30fps video cameras similar to that shownin figure 3.4 to film me

heading a soccer ball. The cameras were triggered accordingto the pattern in figure 6.3,

tiled across the array. We then generated 270fps interpolated video using several methods.

First, we used a cross-dissolve between sequential frames at one camera to simulate linear

interpolation for a synchronized array. The motion of the soccer ball between captured

frames is completely absent. Next, we used nearest-neighbor interpolation, which assem-

bles a video sequence using video captured at the proper timefrom neighboring cameras.

This produces sharp images and captures the path of the ball,but the motion is jittered due

to parallax between views. Finally, we used the barycentricweighted averaging described

previously. This reduces the ball’s motion jitter but introduces ghosting.

Staggering the cameras clearly improves our temporal resolution and results in much

better results even for simple nearest-neighbor and weighted interpolation. Because our

90 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

(a) (b) (c)

Figure 6.4: Better temporal sampling improves interpolation. (a) Linear interpolation be-
tween frames in time for a synchronized camera array is just across-dissolve. (b) Nearest-
neighbor interpolation using staggered cameras produces sharp images, but this composite
of multiple images shows that the path of the ball is jittereddue to parallax between differ-
ent cameras. (c) Weighted interpolation using the nearest views in time and space reduces
the perceived jitter but causes ghost images.

input images are not band-limited in space and time, new views interpolated with either of

these methods will always suffer from artifacts if the motion between views in time or space

is too great. One could imagine prefiltering spatially as described in [5], or temporally by

using overlapped exposure windows, but prefiltering adds undesirable blur to our images.

In the next section, we improve our space-time view interpolation by analyzing the motion

between captured images.

6.6 Multi-baseline Spatiotemporal Optical Flow

We have seen that distributing samples from a dense camera array more evenly in time im-

proves spatiotemporal view interpolation using nearest-neighbor or weighted interpolation.

Reducing the image motion between captured spatiotemporal views can also decrease the

complexity or increase the robustness of other interpolation methods. The combination of

dense cameras, improved temporal sampling, and plane + parallax calibration allows one

to compute new views robustly using optical flow. We call this“multi-baseline spatiotem-

poral optical flow” because it computes flow using data from multiple images at different

spatial and temporal displacements (also known and baselines).

6.6. MULTI-BASELINE SPATIOTEMPORAL OPTICAL FLOW 91

We extended Black and Anandan’s optical flow method [56] usingcode available on the

author’s web site. Their algorithm is known to handle violations of the intensity constancy

and smoothness assumptions well using robust estimation. It uses a standard hierarchical

framework to capture large image motions, but can fail due tomasking when small regions

of the scene move very differently from a dominant background [57]. For our 30fps syn-

chronized juggling sequence, the algorithm succeeded between cameras at the same time

but failed between subsequent frames from the same camera. The motion of the small

juggled balls was masked by the stationary background. Oncewe retimed the cameras,

the motion of the balls was greatly reduced, and the algorithm computed flow accurately

between pairs of images captured at neighboring locations and time steps.

Our modified spatiotemporal optical flow algorithm has two novel features. First, we

solve for a flow field at the(x,y, t) location of our desired virtual view. This was inspired

by the bidirectional flow of Kang et al. [58], who observe thatfor view interpolation, com-

puting the flow at the new view position instead of either source image handles degenerate

flow cases better and avoids the hole-filling problems of forward-warping when creating

new views. They use this to compute flow at a frame halfway between two images in a

video sequence. Typically, optical flow methods will compute flow between two images by

iteratively warping one towards the other. They calculate flow at the halfway point between

two frames by assuming symmetric flow and iteratively warping both images to the mid-

point. We extend the method to compute flow at a desired view inour normalized(x,y, t)

view space. We iteratively warp the nearest four captured images toward the virtual view

and minimize the weighted sum of the robust pairwise data errors and a robust smoothness

error.

Motion cannot be modeled consistently for four images at different space-time locations

using just horizontal and vertical image flow. The second component of this algorithm is

simultaneously accounting for parallax and temporal motion. We decompose optical flow

into the traditional two-dimensional temporal flow plus a third flow term for relative depth

that accounts for parallax between views. The standard intensity constancy equation for

optical flow is

I(i, j, t) = I(i+uδ t, j + vδ t, t +δ t) (6.2)

92 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

Here,(i, j, t) represent the pixel image coordinates and time, andu andv are the horizontal

and vertical motion at an image point. We usei and j in place of the usualx andy to avoid

confusion with our view coordinates(x,y, t).

Plane + parallax calibration produces the relative displacements of all of our cameras,

and we know that parallax between two views is the product of their displacement and

the point’s relative depth. Our modified intensity constancy equation includes new terms

to handle parallax. It represents constancy between a desired virtual view and a nearby

captured image at some offset(dδx,dδy,dδ t) in the space of source images. It accounts

for the relative depth,d, at each pixel as well as the temporal flow(u,v):

Ivirtual(i, j,x,y, t) = Isource(i+uδ t +dδx, j + vδ t +dδy, t +δ t) (6.3)

This equation can be solved for each pixel using a modification of Black’s robust optical

flow. Appendix A describes the implementation details.

We compute flow using four images from the tetrahedron which encloses the desired

view in the same Delauney triangulation as before. The images are progressively warped

toward the common virtual view at each iteration of the algorithm. We cannot test the

intensity constancy equation for each warped image againsta virtual view, so we instead

minimize the error between the four warped images themselves, using the sum of the pair-

wise robust intensity constancy error estimators. This produces a single flow map, which

can be used to warp the four source images to the virtual view.We currently do not reason

about occlusions and simply blend the flowed images using their barycentric weights in the

tetrahedron.

Figure 6.5 compares view interpolation results using our spatiotemporal optical flow

versus a weighted average. Because the computed flow is consistent for the four views,

when the source images are warped and blended, the ball appears sharp. The stinterp1.mp4

video on the companion CD-ROM compares blending, nearest neighbor and flow-based

interpolation for this dataset. The sequences in which the viewpoint is fixed show that the

flow-based interpolation is exactly the registration required to remove alignment errors in

the high-speed video method of the previous chapter.

To allow a greater range of virtual camera movement, we configured our cameras in a

6.7. DISCUSSION 93

(a) (b)

Figure 6.5: View interpolation using space-time optical flow. (a) Interpolated 270fps video
using weighted average of four source images. (b) Interpolated 270fps video using optical
flow. The four source images were warped according to the computed flow and then aver-
aged using the same weights as in image a. No double images arepresent because parallax
and motion for the ball were correctly recovered.

30 wide by 3 tall array. We used the same 3x3 trigger ordering,tiled across the array. In

st interp2.mp4 on the CD-ROM, we show another soccer sequence inwhich we alternate

smoothly between rendering from one view position at 270fpsto freezing time and render-

ing from novel viewing positions. Figure 6.6 shows twenty frames with a slowly varying

viewing positions and times. Figure 6.7 shows five frames spanning the spatial viewing

range of the array.

6.7 Discussion

Our multiple camera array allows us to control the image samples that are recorded from the

spatiotemporal volume a scene generates, and the sampling pattern chosen greatly affects

the complexity of the view interpolation task. While in theory it is possible to simply

resample a linear filtered version of the samples to generatenew views, even with large

numbers of inexpensive cameras, it seems unlikely one couldobtain high enough sampling

density to prevent either blurred images or ghosting artifacts. Instead, the correct placement

94 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

of samples allows the use of simpler modeling approaches rather than none at all. The key

question is, how sophisticated a model is needed and what sampling basis allows the most

robust modeling methods to be used to construct a desired view?

For many interpolation methods, minimizing image motion leads to better quality view

synthesis, so we use minimizing image motion to guide our sample placement. Given our

relatively planar camera array, we use a very simple plane + parallax calibration for inter-

polation in space. For images aligned to a reference plane, spatial view motion results in

parallax for points not on the reference plane. This motion must be balanced against tem-

poral image motion. In our camera array this disparity motion is modest between adjacent

cameras, and is much smaller than the true motion from frame to frame.

Staggering camera trigger in time distributes samples to reduce temporal image motion

between neighboring views without adding new samples. In a way staggered time sampling

is never a bad sampling strategy. Clearly the denser time samples help for scenes with high

image motion. For scenes with small motion, the denser time samples do no harm. Since

the true image motion is small, it is easy to estimate the image at any intermediate time, un-

doing the time skew adds little error. Since the spatial sampling density remains unchanged,

it does not change the view interpolation problem at all. Better temporal sampling lets us

apply relatively simple, fairly robust models like opticalflow to view interpolation in time

and space. We solve for temporal image motion and image motion due to parallax which

improves our interpolation.

Because our flow-based view interpolation methods are local,the constraints on the

camera timings are also local. They need to sample evenly in every local neighborhood.

We use a simple tessellated pattern with locally uniform sampling at the interior and across

boundaries. Algorithms that aggregate data from an entire array of cameras will benefit

from different time stagger patterns and raises the interesting question of finding an optimal

sampling pattern for a few of the more sophisticated model-based methods.

While it is tempting to construct ordered dither patterns to generate unique trigger times

for all cameras there is a tension between staggered shutters to increase temporal resolution

and models that exploit the rigid-body nature of a single time slice. This seems to be an

exciting area for further research.

Staggered trigger times for camera arrays increase temporal resolution with no extra

6.7. DISCUSSION 95

cost in hardware or bandwidth, but have other limits. One fundamental limit is the num-

ber of photons imaged by the cameras if the exposure windows are non-overlapping. The

aperture time for each camera is set to be equal to the smallest time difference between the

cameras. While this minimizes unintended motion blur, allowing sharp images in “Bul-

let time” camera motion, at some point the number of photons in the scene will be too

small, and the resulting image signal to noise ratio will begin to increase. This gives rise

to another dimension that needs to be explored—optimizing the relation between the mini-

mum spacing between time samples and the aperture of the cameras. As mentioned earlier,

Shechtman et al. [48] have done some promising work in this area, using multiple un-

synchronized cameras with overlapping exposures to eliminate motion blur and motion

aliasing in a video sequence.

For our image-based methods, uniform spatiotemporal sampling limits image motion

and enhances the performance of our interpolation methods.We analyzed spatiotemporal

sampling from the perspective of interpolation with a constant depth assumption and related

the temporal and spatial axes with maximum image motions dueto parallax and time. That

constant-depth assumption is one of the limitations of thiswork. In the future, I would

like to enable more general scene geometries. The spatiotemporal optical flow method

generates significantly better results than weighted averaging, but still suffers from the

standard vulnerabilities of optical flow, especially occlusions and masking.

96 CHAPTER 6. APPLICATION #3: SPATIOTEMPORAL VIEW INTERPOLATION

(7.47,192.6) (7.00,194.4) (6.53,196.3) (6.07,198.1) (5.60,200.0)

(5.13,201.9) (4.67,203.7) (4.20,205.6) (3.73,207.4) (3.27,209.3)

(2.80,211.1) (2.33,213.0) (1.87,214.8) (1.40,216.7) (0.93,218.5)

(0.47,220.4) (0,222.2) (0,224.1) (0,225.9) (0,227.8)

Figure 6.6: Twenty sequential frames from an interpolated video sequence demonstrat-
ing slowly varying view positions and times. The input data were captured using a 30x3
array of cameras with nine different trigger times. All views shown are synthesized. Be-
neath each image are the (x,t) view coordinates, with x in units of average camera spacings
(roughly three inches) and t in milliseconds. Motion is moreevident looking across rows
or along diagonals from top left to bottom right.

-15.0 -8.2 0.47 7.23 14.0

Figure 6.7: Five synthesized views showing the spatial viewing range for the 30x3 config-
uration. View spatial coordinate is again in units of cameraspacings, roughly three inches.

Chapter 7

Conclusions

Digital video cameras are becoming cheap and widespread, creating new opportunities for

increased imaging performance. Researchers in this space encounter several obstacles. For

system designers, large video camera arrays generate data at rates that overwhelm com-

modity personal computers and storage media. Inexpensive commodity cameras do not

offer the degree of control or flexibility required for research. Assuming some system for

collecting data from many cameras, researchers must devisecalibration methods that scale

to large numbers of cameras, and vision and graphics algorithms that robustly account for

the lower image quality and more varied geometric and radiometric properties of inexpen-

sive camera arrays.

The architecture in this thesis addresses the issues of scale in large camera array design.

It exploits CMOS image sensors, IEEE1394 communication and MPEG video compression

to control and capture video from very large numbers of cameras to a few PCs. A flexible

mounting system lets us explore many different configurations and applications. I have

shown three applications demonstrating that we can effectively combine data from many

inexpensive sensors to increase imaging performance.

Although synthetic aperture photography has been done withstatic scenes before, we

were the first to capture synthetic aperture videos or to use the technique to look through

partial occluders. Our live synthetic aperture system withinteractive focal plane adjustment

also shows the value of low-level image processing power at the cameras.

The high-speed videography method increases the effectivetemporal sampling rate of

97

98 CHAPTER 7. CONCLUSIONS

our system by staggering the trigger times of the cameras. Wecan compensate for the

electronic rolling shutter in many low-end sensors by jittering the camera triggers and re-

sampling their output. We have pushed this technique up to 1560fps video using 52 tightly

packed, 30fps cameras. The parallel compression in the array lets us stream continuously

at this frame rate.

The spatiotemporal view interpolation system I propose simultaneously extends imag-

ing performance along multiple axes–view position and time. It shows that with inex-

pensive cameras, we can reduce view interpolation of dynamic scenes from estimating

three-dimensional structure and motion to determining parallax and two-dimensional im-

age velocities. Much of this gain is due to improved samplingfrom staggered trigger times,

which minimizes image motion between captured views and enables optical-flow based

algorithms. The multi-baseline, spatiotemporal optical flow method not only presents a

simple framework for synthesizing new virtual views, but also demonstrates that the cali-

bration is adequate for vision algorithms like optical flow,which are sensitive to noise and

radiometric camera variations.

We have shown a video capture system for large arrays of inexpensive cameras and

applications proving that we can use these cameras for interesting high-performance imag-

ing, computer vision, and graphics applications. Where do wego from here? Our recent

experiments with real-time applications using the camera array have produced encouraging

results, but performance limits imposed by the architecture are already apparent. We can

do low-level image processing at each camera, but image datafrom multiple cameras can

only be combined at the host PC. Thus, the host PCs are the bottleneck for our live syn-

thetic aperture system. The same would be true of any on-the-fly light field compression

method that accounts for data redundancy between cameras. Future designs should clearly

allow data to flow between cameras. That said, we must developapplications before we

can determine the performance needs for a next generation array, and the array as is has

already proved to be a valuable tool in that research.

SAP and high-speed videography are but two of the high-x methods enumerated in

chapter 2, and it would be interesting to pursue others. As part of the on-going research

effort involving the camera array, we are currently exploring the high-resolution approach

using cameras with abutting fields of view. We hope to take advantage of the per-camera

99

processing to individually meter each camera and extend thedynamic range of the mosaic,

too. Some global communication to ensure smooth transitions in metering across the array

might be necessary.

There still remain several other untapped high-x dimensions: dynamic range, depth of

field, spectral resolution, low noise, and so on. One question raised by the high-x appli-

cations is, when can a cluster of cameras outperform a single, more expensive camera?

For many applications, it will depend on the economics and quality of inexpensive sensors

compared to the available performance gain of using many cameras. For example, because

the noise reduction from averaging images fromn cameras grows only assqrt(n), if inex-

pensive cameras have much worse noise performance than the expensive alternative (due

to poor optics, more dark current, and so on), they will be unable to affordably close the

gap. By contrast, for high-resolution imaging using cameraswith abutting fields of view,

resolution grows linearly with the number of cameras, whilecost most likely grows much

faster when increasing the resolution of a single camera. For this reason, I would expect

the multiple camera approach to be superior.

For other applications, the consequences of imaging with multiple cameras will fun-

damentally limit performance regardless of sensor qualityor cost. For example, even if

our high-speed videography method were not limited by the poor light-gathering ability

of inexpensive sensors, we would still have to contend with errors caused by the multiple

camera centers of projection. With perfect radiometric camera calibration, we will still

see differences between images from adjacent cameras due tospecularities and occlusions.

These types are artifacts are unavoidable. Optical methodsto ensure a common center of

projection might be acceptable for some applications, but not for high-speed videography

because they reduce the light that reaches each camera.

Attempting to outperform single, high-end cameras will prove fruitful for some appli-

cations, but an even richer area to explore is performance gains that are impossible with a

single camera. View interpolation itself is one example. Another is the synthetic aperture

matting technique I mention in chapter 4. Summing contributions only from pixels in the

input images that see through the occluder eliminates the foreground instead of blurring it

away and produces images with greater contrast. This nonlinear operation would be impos-

sible with a single large-aperture camera. Surely there exist other opportunities for these

100 CHAPTER 7. CONCLUSIONS

sorts of advances.

The possibilities for improved imaging using arrays of inexpensive cameras are vast,

but the tools for exploring them are rare. When I started this project, I did not anticipate

that completely reconfiguring an array of one hundred cameras for new applications would

someday become a common and undaunting task. I hope this thesis has convinced the

reader not only that we can provide the control, capture and calibration capabilities neces-

sary to easily experiment with hundreds of cameras, but alsothat these experiments will

yield rich results.

Appendix A

Spatiotemporal optical flow

implementation

In this appendix, I will describe in detail how we solve for spatiotemporal optical flow at

virtual view locations. To review, the goal of multibaseline spatiotemporal optical flow is to

determine components of image motion due to temporal scene motion and parallax between

views of a scene from different positions and times. To make view interpolation simple,

we solve for this flow for pixels in the image at the virtual viewing position and time. Our

views are parametrized by(x,y, t), where(x,y) is the location in our plane of cameras, and

t is the time the image was captured. We use four source views tocompute flow because

that is the minimum number to enclose a given virtual view in our 3D space-time view

coordinates.

We assume that our cameras all lie in a plane and use plane + parallax calibration to

determine the displacements,xi, between the cameras and some reference camera. Note

that although we use a reference camera for the displacements (typically a central camera),

our algorithm is still truly multi-view, considering all cameras equally, because only the

relative displacements between cameras matter. We align all of the images from all cameras

to a common reference plane using planar homographies. In the aligned images, for two

cameras separated in the camera plane by some relative displacementx, the parallax for a

given point at relative depthw is justwx.

We represent temporal scene motion by its two-dimensional projection(u,v) onto the

101

102 APPENDIX A. SPATIOTEMPORAL OPTICAL FLOW IMPLEMENTATION

image plane, similarly to traditional optical flow. Especially for cameras aligned on a plane,

estimating motion on the z-axis can be ill-conditioned. Because the camera trigger times

are deliberately offset to increase the temporal sampling resolution and ensure that for any

virtual view there are several captured views from nearby locations and times, the combined

motion due temporal and spatial view changes is minimized.

Multibaseline spatiotemporal optical flow estimates the instantaneous(u,v,w) image

flow for each pixel in a virtual view at position and time(x,y, t). It is called multibase-

line because it considers multiple source images for each virtual view, and the spatial and

temporal distances from the arbitrary virtual view to each of the nearby captured ones are

generally different. For each pixel(i, j) in the virtual view, we attempt to solve the follow-

ing equation with respect to each source image:

Ivirtual(i, j,x,y, t) = Isource(i+uδ t +wδx, j + vδ t +wδy, t +δ t)

Optical flow methods traditionally compute a flow error metric by warping one image to-

ward the other based on the computed flow and measuring their difference. Because the

virtual image does not exist, we cannot directly compare it to each warped source image.

Instead, we measure the accuracy of the computed flow by warping the four nearby space-

time views to the virtual view and comparing them to each other.

At this point, we adopt the robust optical flow framework described by Michael Black

in [56]. He determines flow in one image with respect to another by minimizing a robust

error function with data conservation and spatial smoothness terms. The data conservation

term at each pixel is derived from the intensity constancy equation:

ED = ρ1(Ixu+ Iyv+ It ,σ1)

Here,Ix, Iy and It are the spatial and temporal image derivatives, andρ1(err,σ) is some

error estimator.ρ1(x) = x2 would correspond to squared error estimation. The spatial

coherence term measures the spatial derivative of the computed flow at each pixel:

ES = λ ∑
n∈G

(ρ2(u−un,σ2)+ρ2(v− vn,σ2))

103

whereG are the north, south, east and west neighboring pixels, andun and uv are the

computed flow for pixel n in that set.λ sets the relative weight of the smoothness term

versus the data term.

Motion discontinuities and occlusions violate assumptions of smoothness and intensity

constancy, and create outlier errors that deviate greatly from the Gaussian measurement

error assumed by least squares. These outliers have inordinately large influences on squared

errors. Black introduces robust error estimators that reduce the effect of these outliers.

For his flow implementation, he uses the Lorentzian, whose value ρ(x,σ) and derivative

ψ(x,σ) with respect to a measured error x are:

ρσ (x) = log

(

1+
1
2

(x
σ

)2
)

ψσ (x) =
2x

2σ2 + x2

σ is a scale factor related to the expected values of inliers and outliers.

We too use the Lorentzian estimator. Now, we can formalize our error metric. Although

we solve for flow using multiple source images, we compute that flow for pixels in a single

virtual image. Thus, the spatial coherence error termES is unchanged. Our data coherence

term must measure errors between four source images warped to the virtual view accord-

ing to our three-component flow(u,v,w). To use gradient-based optical flow, we need to

compute temporal derivatives between images, so we measurethe sum of pairwise robust

errors between warped images. Here, we define three new quantities for each source view

relative to the virtual view.αn = tn − tv is the temporal offset from the virtual image cap-

tured at timetv to source imageIn captured at timetn. (βnx,βny) = (xn − xv,yn − yv) is the

relative displacement in the camera plane from the virtual view to source viewIn. The data

conservation error term at each pixel is:

ED = ∑
m6=n

ρ1

(

Ixm,n(u(αm −αn)+w(βmx −βnx))+ Iym,n(v(αm −αn)

+w(βmy −βny))+ Itm,n ,σ1

)

Here,Ixm,n is the average of the horizontal image spatial derivatives in imageIn andIm at

104 APPENDIX A. SPATIOTEMPORAL OPTICAL FLOW IMPLEMENTATION

the pixel, and likewise for the vertical spatial derivativeIym,n . Itm,n is simplyIm − In for each

pixel.

Now that we have defined robust error functions for multibaseline spatiotemporal op-

tical flow, all that remains is to solve for(u,v,w) at each pixel to minimize the error. We

modified Black’s publicly available code that calculates flowhierarchically using grad-

uated non-convexity (GNC) and successive over-relaxation (SOR). Hierarchical methods

filter and downsample the input images in order to capture large motions using a gradient-

based framework. GNC replaces a non-convex error term with aconvex one to guarantee

a global minimum, then iterates while adjusting the error term steadily towards the desired

non-convex one. Successive over-relaxation is an iterative method for the partial differ-

ential equations the result from the data consistency and smoothness terms. Readers are

referred to [56] more details.

The iterative SOR update equation for minimizingE = ED + ES at stepn + 1 has the

same form as in Black’s work, but we have to update three terms for flow:

u(n+1) = u(n)−ω
1

T (u)

∂E
∂u

v(n+1) = v(n)−ω
1

T (v)
∂E
∂v

w(n+1) = w(n)−ω
1

T (w)

∂E
∂w

where 0< ω < 2 is a parameter used to over correct the estimates foru, v, andw at each

step and speed convergence. The first partial derivatives ofE with respect tou, v, andw are

∂E
∂u

=

(

∑
m6=n

Ixm,n(αm −αn)ψ1(errm,n,σ1)

)

+λ ∑
n∈G

ψ2(u−un,σ2)

∂E
∂v

=

(

∑
m6=n

Iym,n(αm −αn)ψ1(errm,n,σ1)

)

+λ ∑
n∈G

ψ2(v− vn,σ2)

105

∂E
∂w

=

(

∑
m6=n

(Ixm,n(βmx −βnx)ψ1(errm,n)+ Iym,n(βmy −βny)ψ1(errm,n))

)

+λ ∑
n∈G

ψ2(w−wn,σ2)

whereG as before are north, south, east and west neighbors of each pixel, m andn are

from the set{1,2,3,4} of input images, anderrm,n is the intensity constancy error:

errm,n = Ixm,n(u(αm −αn)+w(βmx −βnx))+ Iym,n(v(αm −αn)+w(βmy −βny))+ Itm,n

T(u), T(v), and T(w) are upper bounds on the second partial derivatives of E:

T (u) =

(

∑
m6=n

I2
xm,n

(αm −αn)
2

σ2
1

)

+
4λ
σ2

2

T (v) =

(

∑
m6=n

I2
ym,n

(αm −αn)
2

σ2
1

)

+
4λ
σ2

2

T (w) =

(

∑
m6=n

(Ixm,n(βmx −βnx)+ Iym,n(βmx −βny))
2

σ2
1

)

+
4λ
σ2

2

With this, we have all of the pieces to solve for spatiotemporal optical flow using simulta-

neous over-relaxation.

106 APPENDIX A. SPATIOTEMPORAL OPTICAL FLOW IMPLEMENTATION

Bibliography

[1] Y.Y. Schechner and S.K. Nayar. Generalized mosaicing. In Proceedings of IEEE

International Conference on Computer Vision (ICCV), Vancouver, Canada, July 2001.

[2] S.Mann and R.W.Picard. Being ’undigital’ with digital cameras: Extending dynamic

range by combining differently exposed pictures. Technical Report 323, M.I.T. Me-

dia Lab Perceptual Computing Section, Boston, Massachusetts, 1994. Also appears,

IS&T’s 48th annual conference, Cambridge, Massachusetts, May 1995.

[3] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance maps

from photographs. InSIGGRAPH’97, pages 369–378, August 1997.

[4] R. Szeliski. Image mosaicing for tele-reality applications. InWACV94, pages 44–53,

1994.

[5] M. Levoy and P. Hanrahan. Light field rendering. InProc. ACM Conference on Com-

puter Graphics (SIGGRAPH’96), pages 31–42, New Orleans, USA, August 1996.

[6] A. Isaksen, L. McMillan, and S. Gortler. Dynamically reparametrized light fields. In

Proceedings of ACM SIGGRAPH 2000, pages 297–306, 2000.

[7] V. Vaish, B. Wilburn, and M. Levoy. Using plane + parallax for calibrating dense cam-

era arrays. InProc. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2004.

[8] N. Joshi. Color calibration for arrays of inexpensive iamge sen-

sors. Technical Report CSTR-2004-02, Stanford University, 2004.

http://graphics.stanford.edu/˜winograd/reports/2004-02.pdf.

107

108 BIBLIOGRAPHY

[9] P. Rander, P. Narayanan, and T. Kanade. Virtualized reality: Constructing time-

varying virtual worlds from real events. InProceedings of IEEE Visualization, pages

277–283, Phoenix, Arizona, October 1997.

[10] P.J. Nayaranan, P.W. Rander, and T. Kanade. Synchronouscapture of image se-

quences from multiple cameras. Technical Report CMU-RI-TR-95-25, Carnegie Mel-

lon University, December 1995.

[11] T. Kanade, H. Saito, and S. Vedula. The 3d-room: Digitizing time-varying 3d

events by synchronized multiple video streams. Technical Report CMU-RI-TR-98-

34, Carnegie Mellon University, 1998.

[12] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. InProc.

ACM Conference on Computer Graphics (SIGGRAPH’96), pages 43–54, New Or-

leans, USA, August 1996.

[13] Stanford spherical gantry.http://graphics.stanford.edu/projects/gantry/.

[14] D. Taylor. Virtual camera movement: The way of the future? American Cinematog-

rapher, 77(9):93–100, September 1996.

[15] J.-C.Yang, M. Everett, C. Buehler, and L. McMillan. A real-time distributed light

field camera. InEurographics Workshop on Rendering, pages 1–10, 2002.

[16] C. Zhang and T. Chen. A self-reconfigurable camera array. In Eurographics Sympo-

sium on Rendering, 2004.

[17] Paul Rademacher and Gary Bishop. Multiple-center-of-projection images. InSIG-

GRAPH 1998, pages 199–206, 1998.

[18] S.E. Chen and L. Williams. View interpolation for image synthesis. InProc. ACM

Conference on Computer Graphics (SIGGRAPH’93), pages 279–288, 1993.

[19] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruction by voxel coloring.

In Proceedings of the Computer Vision and Pattern Recognition Conference, pages

1067–1073, 1997.

BIBLIOGRAPHY 109

[20] K. Kutulakos and S. M. Seitz. A theory of shape by space carving. In Proceedings of

IEEE International Conference on Computer Vision (ICCV), 1999.

[21] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-based visual

hulls. InProceedings of ACM Conference on Computer Graphics (SIGGRAPH-2000),

pages 369–374, New Orleans, USA, July 2000.

[22] Kostas Daniilidis. The page of omnidirectional vision. http://www.cis.upenn.edu/

kostas/omni.html.

[23] Shree Nayar. Catadioptric omnidirectional camera. InIEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Puerto Rico, June 1997.

[24] M. Irani and S. Peleg. Improving resolution by image registration.Graphical Models

and Image Processing, 53(3):231–239, May 1991.

[25] Z. Lin and H. Shum. On the fundamental limits of reconstruction-based super-

resolution algorithms. InIEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2001.

[26] S. Baker and T. Kanade. Limits on super-resolution and how to break them. InIEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2000.

[27] A. Finkelstein, C.E. Jacobs, and D.H. Salesin. Multiresolution video. InProc. Sig-

graph 1996, New Orleans, LA, August 1996.

[28] A. Hertzmann, C.E. Jacobs, B. Curless, and D.H. Salesin. Image analogies. InProc.

Siggraph 2001, Los Angeles, CA, August 2001.

[29] H.S. Sawhney, Y. Guo, K. Hanna, R. Kumar, S. Adkins, and S.Zhou. Hybrid stereo

camera: An ibr approach for synthesis of very high resolution stereoscopic image

sequences. InProc. Siggraph 2001, Los Angeles, CA, August 2001.

[30] J.M. Ogden, E.H. Adelson, J.R. Bergen, and P.J. Burt. Pyramid-based computer

graphics.RCA Engineer, 30(5), Sept./Oct. 1985.

110 BIBLIOGRAPHY

[31] H. Maruyama, H. Ohtake, T. Hayashida, M. Yamada, K. Kitamura, T. Arai, T.G. Etoh,

J. Namiki, T. Yoshida, H. Maruno, Y. Kondo, T. Ozaki, and S. Kanayama. Color

video camera of 1,000,000 fps with triple ultrahigh-speed image sensors. InProc.

26th International Congress on High-Speed Photography and Photonics, Alexandria,

VA, Sept 2004.

[32] B. Wandell.Foundations of Vision. Sinauer Associates, Sunderland, MA, 1995.

[33] B.E. Bayer. Color imaging array, 1976. U.S. Patent 3,971,065.

[34] J.E. Adams. Design of practical color filter array interpolation algorithms for digital

cameras. In D. Sinha, editor,Proceedings of SPIE, Real Time Imaging II, volume

3028, pages 117–125, 1997.

[35] D.R. Cok. Signal processing method and apparatus for producing interpolated

chrominance values in a sampled color image signal, 1987. U.S. Patent 4,642,678.

[36] H. Tian. Analysis of temporal noise in cmos photodiode active pixel sensor.IEEE

Journal of Solid-State Circuits, 36(1), January 2001.

[37] J. Janesick. Dueling detectors.OE Magazine, 2(2):30–33, February 2002.

[38] D. Anderson.FireWire System Architecture, Second Edition. Mindshare, Inc, 1999.

[39] J.F. Hamilton and J.E. Adams. Adaptive color plane interpolation in single sensor

color electronic camera, 1997. U.S. Patent 5,629,734.

[40] Motorola mcf5206e product summary. http://www.freescale.com/webapp/

sps/site/prodsummary.jsp?code=MCF5206E&nodeId=01DFTQ00M9.

[41] R. Hartley and A. Zisserman.Multiple View Geometry. Cambridge University Press,

2000.

[42] R.Y. Tsai. A versatile camera calibration technique forhigh accuracy 3d vision

metrology using off–the–shelf tv cameras and lenses.IEEE Journal of Robotics and

Automation, 3(4):323–344, August 1987.

BIBLIOGRAPHY 111

[43] J. Heikkila and O. Silven. A four-step camera calibration procedure with implicit

image correction. InIEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 1997.

[44] Zhengyou Zhang. A flexible new technique for camera calibration. Proc. Interna-

tional Conference on Computer Vision (ICCV’99), September 1999.

[45] Vaibhav Vaish. Light field camera calibration.http://graphics.stanford.edu/ vaib-

hav/projects/lfca calib.

[46] R. Collins. A space sweep approach to true multi image matching. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 1996.

[47] R. Szeliski. Shape and appearance modelling from multiple im-

ages. In Workshop on Image Based Rendering and Modelling, 1998.

(http://research.microsoft.com/ szeliski/IBMR98/web/).

[48] E. Shechtman, Y. Caspi, and M. Irani. Increasing space-time resolution in video

sequences. InEuropean Conference on Computer Vision (ECCV), May 2002.

[49] R. Kingslake.Optics in Photography. SPIE Optical Engineering Press, 1992.

[50] S. Vedula. Image based spatio-temporal modelling and view intepolation of dynamic

events. Technical Report CMU-RI-TR-01-37, Carnegie Mellon University, 2001.

[51] H. Nanda and R. Cutler. Practical calibrations for a real-time digital omnidirectional

camera. InIEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2001.

[52] Z. Lin and H. Shum. On the number of samples needed in light field rendering with

constant-depth assumption. InIEEE Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, pages 588–595, 2000.

[53] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. Plenoptic sampling. Proc. ACM

Conference on Computer Graphics (SIGGRAPH’00), New Orleans, USA, pages 307–

318, August 2000.

112 BIBLIOGRAPHY

[54] R.I. Carceroni and K.N. Kutulakos. Multi-view scene capture by surfel sampling:

From video streams to non-rigid 3d motion, shape & reflectance. In Int. Conference

on Computer Vision, 1998.

[55] S. Vedula, S. Baker, and T. Kanade. Spatio-temporal viewinterpolation. InEuro-

graphics Workshop on Rendering, pages 1–11, 2002.

[56] M.J. Black and P. Anandan. A framework for the robust estimation of optical flow.

In Proceedings of IEEE International Conference on Computer Vision (ICCV), pages

231–236, 1993.

[57] J. Bergen, P. Burt, R. Hingorani, and S. Peleg. A three framealgorithm for estimat-

ing two-component image motion.IEEE Trans. on Pattern Analysis and Machine

Intelligence, 14(9):886–895, 1992.

[58] S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High dynamic range video.

In ACM SIGGRAPH and ACM Trans. on Graphics, San Diego, CA, July 2003.

